二叉树中何为某一值的路径实现

根据《剑指Offer——名企面试官精讲典型编程题》上的讲解,实现代码如下:

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<vector>
using namespace std;

//二叉树结点
typedef struct BiTNode{
	//数据
	int data;
	//左右孩子指针
	struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;

//按先序序列创建二叉树
int CreateBiTree(BiTree &T){
	int data;
	//按先序次序输入二叉树中结点的值(一个字符),‘#’表示空树
	scanf("%d",&data);
	if(data == -1){
		T = NULL;
	}
	else{
		T = (BiTree)malloc(sizeof(BiTNode));
		//生成根结点
		T->data = data;
		//构造左子树
		CreateBiTree(T->lchild);
		//构造右子树
		CreateBiTree(T->rchild);
	}
	return 0;
}

void FindPath(BiTNode* pRoot, int expectedSum, std::vector<int>& path, int& currentSum);

void FindPath(BiTNode* pRoot, int expectedSum)
{
    if(pRoot == NULL)
        return;

    std::vector<int> path;
    int currentSum = 0;
    FindPath(pRoot, expectedSum, path, currentSum);
}

void FindPath(BiTNode* pRoot, int expectedSum, std::vector<int>& path, int& currentSum)
{
    currentSum += pRoot->data;
    path.push_back(pRoot->data);

    // 如果是叶结点,并且路径上结点的和等于输入的值
    // 打印出这条路径
    bool isLeaf = pRoot->lchild == NULL && pRoot->rchild == NULL;
    if(currentSum == expectedSum && isLeaf)
    {
        printf("A path is found: ");
        std::vector<int>::iterator iter = path.begin();//选择vector而不用stack的原因
        for(; iter != path.end(); ++ iter)
            printf("%d\t", *iter);
        
        printf("\n");
    }

    // 如果不是叶结点,则遍历它的子结点
    if(pRoot->lchild != NULL)
        FindPath(pRoot->lchild, expectedSum, path, currentSum);
    if(pRoot->rchild != NULL)
        FindPath(pRoot->rchild, expectedSum, path, currentSum);

    // 在返回到父结点之前,在路径上删除当前结点,
    // 并在currentSum中减去当前结点的值
    currentSum -= pRoot->data;
    path.pop_back();
} 

int main()
{
	BiTree T;
	CreateBiTree(T);
	
	FindPath(T, 22);
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
问题描述: 给定一棵二叉树和一个整数目标值,找出所有从根节点到叶子节点的路径,使得路径上的节点值之和等于目标值。 解题思路: 我们可以使用深度优先搜索(DFS)的思想来解决这个问题。具体步骤如下: 1. 定义一个列表path,用于存储当前的路径。 2. 递归遍历每个节点: a. 将当前节点添加到path。 b. 如果当前节点是叶子节点且路径上的节点值之和等于目标值,则将当前路径添加到结果。 c. 递归遍历当前节点的左子树和右子树。 d. 在递归结束后,将当前节点从path移除,以便开始探索其他路径。 3. 返回结果列表,即所有路径和等于目标值的路径。 代码实现: ``` class Solution: def pathSum(self, root: TreeNode, targetSum: int) -> List[List[int]]: def dfs(node, path, target): if not node: return path.append(node.val) if not node.left and not node.right and sum(path) == target: res.append(path.copy()) dfs(node.left, path, target) dfs(node.right, path, target) path.pop() res = [] dfs(root, [], targetSum) return res ``` 以上代码,我们定义了一个辅助函数dfs来进行递归遍历。在遍历的过程,我们使用列表path来存储当前路径,如果路径上的节点值之和等于目标值,则将当前路径添加到结果列表res。最后返回结果res。 时间复杂度分析: 假设二叉树的节点数为n,则时间复杂度为O(n),因为我们需要遍历每个节点一次。需要注意的是,在每个节点处,我们都会调用sum函数来计算当前路径的节点值之和,因此总的时间复杂度还需要考虑到sum函数的时间复杂度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值