Kola_Abner
码龄12年
关注
提问 私信
  • 博客:173,199
    173,199
    总访问量
  • 19
    原创
  • 1,810,615
    排名
  • 27
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2012-12-11
博客简介:

Kola_Abner

博客描述:
志不达者智不达!
查看详细资料
个人成就
  • 获得62次点赞
  • 内容获得7次评论
  • 获得216次收藏
创作历程
  • 3篇
    2022年
  • 3篇
    2019年
  • 5篇
    2018年
  • 28篇
    2017年
  • 12篇
    2016年
成就勋章
TA的专栏
  • 模式识别
  • linux
    5篇
  • 编程
    5篇
  • 机器学习
    10篇
  • 深度学习
    7篇
  • 嵌入式
  • 物联网
  • FPGA
  • 大数据
  • 云计算
  • tensorflow
    11篇
  • python
    21篇
  • Android
    1篇
  • 算法
    8篇
  • 神经网络
    4篇
  • 论文写作
    2篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络tensorflowpytorch图像处理数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

将jupyter notebook 配置为默认启动 chrome浏览器

将jupyter notebook 配置为默认启动 chrome浏览器
转载
发布博客 2022.10.02 ·
963 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

model.compile()函数配置(优化器, 损失函数, 准确率)

https://blog.csdn.net/Fwuyi/article/details/123213437深度学习模型在喂数据进行训练前常会用到compile函数进行训练时所使用优化器、损失函数等的配置 。1.model.compile() 作用设置优化器、损失函数和准确率评测标准。2.model.compile() 语法形式1:model.compile(optimizer = tf.keras.optimizers.优化器(参数),loss = tf.keras.losses.损失函数.
原创
发布博客 2022.04.18 ·
5646 阅读 ·
7 点赞 ·
0 评论 ·
45 收藏

深度学习模型训练提前终止方法

EarlyStopping:https://keras.io/api/callbacks/early_stopping/https://blog.csdn.net/weixin_44048809/article/details/105702314
原创
发布博客 2022.04.17 ·
2008 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

从核函数到SVM原理--sklearn-SVM实现

从核函数到SVM原理--sklearn-SVM实现 SVM核函数及sklearn实现SVM在SVM中,其中最重要的也是最核心的就是核函数的选取和参数选择,当然这个需要大量的经验来支撑。今天我们就是抛砖引玉形象的讲解一下什么是核函数,及在SVM中在哪用到。我们知道,SVM相对感知机而言,它可以解决线性不可分的问题,那么它是怎么解决的呢?它的解决思想很...
转载
发布博客 2019.02.28 ·
664 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

一些常用的SCI论文句式 (1)

写英文文章经常要重复讲一个说法讲几次,但描述方式不能太祥林嫂,所以备好一些常用句式还是相当有用的。以下的句式是本人在阅读文献过程中亲自整理的,主要来源于Science,Nature,Immunity,JEM,JCI和JI。这些句式都很地道,决不山寨,希望对有需要的朋友有用。热点,广泛关注、研究1.Themechanisms governing the homeostasis of memory...
转载
发布博客 2019.02.16 ·
1603 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

【学术】英文写作中值得参考的语法、句式(四)辑器

作者:欧阳笠链接:https://www.zhihu.com/question/23684933/answer/32464015来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。我在本科期间发表了两篇SCI一作论文,全部都是自己写的,老师叫我找外国人帮忙改,我嫌麻烦,就没找,最后投稿也轻松命中。一般来说,第一篇文章会麻烦些,熟悉这一流程以后,后面就比较快了。现在...
转载
发布博客 2019.02.16 ·
380 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GAN/image/semi-supervised learning等的代码和文章

GAN/image/semi-supervised learning等的代码和文章,超级棒!
转载
发布博客 2018.12.07 ·
542 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

GAN/image/semi-supervised learning等的代码和文章

GAN/image/semi-supervised learning等的代码和文章,超级棒!
转载
发布博客 2018.12.07 ·
542 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

报错: AttributeError: 'module' object has no attribute 'to_rgba'

主要是matplotlib版本引起的问题,可以降低其版本。可运行如下代码: sudo pip install matplotlib==2.2.0
原创
发布博客 2018.11.30 ·
2955 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

NVIDIA DIGITS 学习笔记(NVIDIA DIGITS-2.0 + Ubuntu 14.04 + CUDA 7.0 + cuDNN 7.0 + Caffe 0.13.0)

NVIDIA DIGITS 学习笔记
转载
发布博客 2018.11.29 ·
190 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

KOLA.TF

KOLA.TF
转载
发布博客 2018.11.28 ·
190 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习结果统计-准确率、召回率F1-score

用手写数字识别来作为说明。准确率: 所有识别为”1”的数据中,正确的比率是多少。 如识别出来100个结果是“1”, 而只有90个结果正确,有10个实现是非“1”的数据。 所以准确率就为90%召回率: 所有样本为1的数据中,最后真正识别出1的比率。 如100个样本”1”, 只识别出了93个是“1”, 其它7个是识别成了其它数据。 所以召回率是93%F1-score: &...
转载
发布博客 2018.11.15 ·
749 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

“深度学习”和“多层神经网络”的区别

从广义上说深度学习的网络结构也是多层神经网络的一种。传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。而深度学习中最著名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。 输入层 -
转载
发布博客 2017.11.26 ·
10354 阅读 ·
3 点赞 ·
1 评论 ·
7 收藏

开源软件库TensorFlow最全教程和项目列表

TensorFlow 是一个开源软件库,用于使用数据流图进行数值计算。换句话说,即是构建深度学习模型的最佳方式。本文整理了一些优秀的有关 TensorFlow 的教程和项目列表。一、教程 TensorFlow Tutorial 1 — 从基础到更有趣的 TensorFlow 应用 TensorFlow Tutorial 2 — 基于 Google TensorFlow 框架的深度学习简介,这些教
原创
发布博客 2017.11.09 ·
453 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

Tensorflow入门及项目

tensorflow+入门笔记︱基本张量tensor理解与tensorflow运行结构 原创 2017年01月22日 11:57:34 <ul class="article_t
转载
发布博客 2017.11.09 ·
10797 阅读 ·
8 点赞 ·
0 评论 ·
64 收藏

python文件批量改名

import osimport fnmatchimport natsortpath=input('请输入文件路径(结尾加上/):') #获取该目录下所有文件,存入列表中f=fnmatch.filter(os.listdir(path), '*.txt')n = 0for i in f: oldname = path + f[n] newname = path +
原创
发布博客 2017.10.30 ·
400 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python图表绘制:matplotlib绘图库入门

Python图表绘制:matplotlib绘图库入门 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序。因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/
转载
发布博客 2017.10.16 ·
470 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

jupyter notebook 误删恢复

在jupyter notebook上使用IPython写了大段代码, 却不小心误删, 同时由于jupyter notebook只有一个存档位, 代码没有存档,或存档过久, 因此无法恢复原内容怎么办? 可以利用IPython强大的交互能力恢复出来!!不要关jupyter notebook, 而是继续执行下面的代码for line in locals()['In']: print(lin
转载
发布博客 2017.10.12 ·
12139 阅读 ·
3 点赞 ·
2 评论 ·
3 收藏

安装Ubuntu Linux系统时硬盘分区最合理的方法

无论是安装Windows还是Linux操作系统,硬盘分区都是整个系统安装过程中最为棘手的环节,网上的一些Ubuntu Linux安装教程一般都是自动分区,给初学者带来很大的不便,下面我就根据多年来在合肥上门装系统的经验谈谈安装Ubuntu Linux系统时硬盘分区最合理的方法。在讲硬盘分区之前,我先来普及一下硬盘的相关分类,硬盘一般分为IDE硬盘、SCSI硬盘和SATA硬盘三种,在Linux系统中
转载
发布博客 2017.09.28 ·
762 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

SVM

1.SVM的原理  SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题.简单地说,就是升维和线性化.升维,就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起“维数灾难”,因而人们很少问津.但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本
原创
发布博客 2017.09.21 ·
1563 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏
加载更多