其实归并排序使用了分治法的思想。
有许多的算法在结构上都是递归的,为了解决一个给定的问题,算法要一次或者多次的调用其自身来解决相关的子问题。这些算法通常采用的是分治策略:
将原问题划分成n个规模较小的结构与原问题相似的子问题;递归的解决这些子问题,然后再合并其结果,就得到了原问题的解。
分治模式在每一程递归上都有三个步骤:
分解:(Divide):将原问题分解成为一系列的子问题;
解决(conquer):递归的解决各个子问题。如果子问题足够的小,直接的求解。
合并(Combine):将子问题的结果合并成为原问题解。
合并排序(Merge sort)算法完全依照上面的模式:
分解:将n个元素分成各含n/2个元素的子序列。
解决:用合并排序法对二个子序列递归的排序。
合并:合并二个已排序的子序列已得到结果。
一种实现是:
import java.util.Arrays; //归并排序 public class demo2 { public static void main(String[] args) { int a [] = new int []{5,2,4,7,1,3,2}; merge_sort (a,0,a.length - 1); System.out.println(Arrays.toString(a)); } public static void merge_sort (int a[],int p,int r) { if (p < r) { int q = (p + r)/2; merge_sort (a,p,q); merge_sort (a,q+1,r); merge (a,p,q+1,r); } } public static void merge (int a[],int p,int q,int r) { int[] left = new int[q - p]; int[] right = new int [r - q + 1]; int index = 0; for (int i = p;i < q;i++) { left[index++] = a[i]; } index = 0; for (int i = q;i<= r;i++) { right[index++] = a[i]; } int i = 0; int j = 0; index = p; while (i < left.length && j < right.length) { if (left[i] <= right[j]) { a[index] = left[i]; i++; }else { a[index] = right[j]; j++; } index++; } while (i < left.length) { a[index++] = left[i]; i++; } while (j < right.length) { a[index++] = right[j]; j++; } } }
写在一个函数中:
#include "stdio.h" void merge (int *A,int x,int y,int *B) { if (y - x == 1) { return; }else { int m = (x + y) / 2; int p = x; int q = m; int i = 0; merge (A,x,m,B);//分成[x,m)和[m,y) merge (A,m,y,B); while (p < m || q < y) { if ( q < y &&( p >= m || A[p] >= A[q])) { B[i++] = A[q++]; }else { B[i++] = A[p++]; } } q = 0; for (i = x;i < y;i++) { A[i] = B[q++]; } } } int main () { int i; int b[10]; int a[] = {-1,-9,0,-9,-89,89,-2};//n = 7 merge (a,0,7,b); for (i = 0;i <7;i++) { printf ("%d ",a[i]); } return 0; }