logistic和softmax原理、联系

logistic原文:http://blog.csdn.net/ariessurfer/article/details/41310525

softmax原文:http://blog.csdn.net/pi9nc/article/details/19336629

Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素之间关系的一种多

分析方法。通常的问题是,研究某些因素条件下某个结果是否发生,比如医学中根据病人的一些症状来判断它是

否患某种病。

 

在讲解Logistic回归理论之前,我们先从LR分类器说起。LR分类器,即Logistic Regression Classifier。

在分类情形下,经过学习后的LR分类器是一组权值,当测试样本的数据输入时,这组权值与测试数据按

线性加和得到

 

           

 

这里是每个样本的个特征。

之后按照sigmoid函数的形式求出

 

           

 

由于sigmoid函数的定义域为,值域为,因此最基本的LR分类器适合对两类目标进行分类。

所以Logistic回归最关键的问题就是研究如何求得这组权值。这个问题是用极大似然估计来做的。

 

 

下面正式地来讲Logistic回归模型。

 

考虑具有个独立变量的向量,设条件慨率为根据观测量相对于某事件发生的

概率。那么Logistic回归模型可以表示为

 

           

这里称为Logistic函数。其中

 

那么在条件下不发生的概率为

 

           

 

所以事件发生与不发生的概率之比为

 

           

 

这个比值称为事件的发生比(the odds of experiencing an event),简记为odds。

 

对odds取对数得到

 

           

 

 

可以看出Logistic回归都是围绕一个Logistic函数来展开的。接下来就讲如何用极大似然估计求分类器的参数。

 

假设有个观测样本,观测值分别为,设为给定条件下得到的概率,同样地,

的概率为,所以得到一个观测值的概率为

 

因为各个观测样本之间相互独立,那么它们的联合分布为各边缘分布的乘积。得到似然函数为

 

                                         

 

然后我们的目标是求出使这一似然函数的值最大的参数估计,最大似然估计就是求出参数,使得

取得最大值,对函数取对数得到

 

            

 

继续对这分别求偏导,得到个方程,比如现在对参数求偏导,由于

 

             

 

所以得到

 

            

 

这样的方程一共有个,所以现在的问题转化为解这个方程形成的方程组。

 

上述方程比较复杂,一般方法似乎不能解之,所以我们引用了牛顿-拉菲森迭代方法求解。

 

利用牛顿迭代求多元函数的最值问题以后再讲。。。

 

简单牛顿迭代法:http://zh.m.wikipedia.org/wiki/%E7%89%9B%E9%A1%BF%E6%B3%95

 

实际上在上述似然函数求最大值时,可以用梯度上升算法,一直迭代下去。梯度上升算法和牛顿迭代相比,收敛速度

慢,因为梯度上升算法是一阶收敛,而牛顿迭代属于二阶收敛。


Softmax回归

Contents

  [hide]

简介

在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 \textstyle y 可以取两个以上的值。 Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字。Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合。(译者注: MNIST 是一个手写数字识别库,由NYU 的Yann LeCun 等人维护。http://yann.lecun.com/exdb/mnist/ )


回想一下在 logistic 回归中,我们的训练集由 \textstyle m 个已标记的样本构成:\{ (x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)}) \} ,其中输入特征x^{(i)} \in \Re^{n+1}。(我们对符号的约定如下:特征向量 \textstyle x 的维度为 \textstyle n+1,其中 \textstyle x_0 = 1 对应截距项 。) 由于 logistic 回归是针对二分类问题的,因此类标记 y^{(i)} \in \{0,1\}。假设函数(hypothesis function) 如下:

\begin{align}h_\theta(x) = \frac{1}{1+\exp(-\theta^Tx)},\end{align}


我们将训练模型参数 \textstyle \theta,使其能够最小化代价函数 :

\begin{align}J(\theta) = -\frac{1}{m} \left[ \sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)}) \log (1-h_\theta(x^{(i)})) \right]\end{align} 


(求和符号要放在中括号外面)在 softmax回归中,我们解决的是多分类问题(相对于 logistic 回归解决的二分类问题),类标 \textstyle y 可以取 \textstyle k 个不同的值(而不是 2 个)。因此,对于训练集 \{ (x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)}) \},我们有 y^{(i)} \in \{1, 2, \ldots, k\}。(注意此处的类别下标从 1 开始,而不是 0)。例如,在 MNIST 数字识别任务中,我们有 \textstyle k=10 个不同的类别。


对于给定的测试输入 \textstyle x,我们想用假设函数针对每一个类别j估算出概率值 \textstyle p(y=j | x)。也就是说,我们想估计 \textstyle x 的每一种分类结果出现的概率。因此,我们的假设函数将要输出一个 \textstyle k 维的向量(向量元素的和为1)来表示这 \textstyle k 个估计的概率值。 具体地说,我们的假设函数 \textstyle h_{\theta}(x) 形式如下:

\begin{align}h_\theta(x^{(i)}) =\begin{bmatrix}p(y^{(i)} = 1 | x^{(i)}; \theta) \\p(y^{(i)} = 2 | x^{(i)}; \theta) \\\vdots \\p(y^{(i)} = k | x^{(i)}; \theta)\end{bmatrix}=\frac{1}{ \sum_{j=1}^{k}{e^{ \theta_j^T x^{(i)} }} }\begin{bmatrix}e^{ \theta_1^T x^{(i)} } \\e^{ \theta_2^T x^{(i)} } \\\vdots \\e^{ \theta_k^T x^{(i)} } \\\end{bmatrix}\end{align}


其中 \theta_1, \theta_2, \ldots, \theta_k \in \Re^{n+1} 是模型的参数。请注意 \frac{1}{ \sum_{j=1}^{k}{e^{ \theta_j^T x^{(i)} }} }这一项对概率分布进行归一化,使得所有概率之和为 1 。


为了方便起见,我们同样使用符号 \textstyle \theta 来表示全部的模型参数。在实现Softmax回归时,将 \textstyle \theta 用一个 \textstyle k \times(n+1) 的矩阵来表示会很方便,该矩阵是将 \theta_1, \theta_2, \ldots, \theta_k 按行罗列起来得到的,如下所示:

\theta = \begin{bmatrix}\mbox{---} \theta_1^T \mbox{---} \\\mbox{---} \theta_2^T \mbox{---} \\\vdots \\\mbox{---} \theta_k^T \mbox{---} \\\end{bmatrix}


代价函数

现在我们来介绍 softmax 回归算法的代价函数。在下面的公式中,\textstyle 1\{\cdot\} 是示性函数,其取值规则为:

 值为真的表达式 

, \textstyle 1\{ 值为假的表达式 \textstyle \}=0。举例来说,表达式 \textstyle 1\{2+2=4\} 的值为1 ,\textstyle 1\{1+1=5\}的值为 0。我们的代价函数为:

\begin{align}J(\theta) = - \frac{1}{m} \left[ \sum_{i=1}^{m} \sum_{j=1}^{k}  1\left\{y^{(i)} = j\right\} \log \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{ \theta_l^T x^{(i)} }}\right]\end{align}


值得注意的是,上述公式是logistic回归代价函数的推广。logistic回归代价函数可以改为:

\begin{align}J(\theta) &= -\frac{1}{m} \left[ \sum_{i=1}^m   (1-y^{(i)}) \log (1-h_\theta(x^{(i)})) + y^{(i)} \log h_\theta(x^{(i)}) \right] \\&= - \frac{1}{m} \left[ \sum_{i=1}^{m} \sum_{j=0}^{1} 1\left\{y^{(i)} = j\right\} \log p(y^{(i)} = j | x^{(i)} ; \theta) \right]\end{align}


可以看到,Softmax代价函数与logistic 代价函数在形式上非常类似,只是在Softmax损失函数中对类标记的 \textstyle k 个可能值进行了累加。注意在Softmax回归中将 \textstyle x 分类为类别 \textstyle j 的概率为:

p(y^{(i)} = j | x^{(i)} ; \theta) = \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{ \theta_l^T x^{(i)}} }.


对于 \textstyle J(\theta) 的最小化问题,目前还没有闭式解法。因此,我们使用迭代的优化算法(例如梯度下降法,或 L-BFGS)。经过求导,我们得到梯度公式如下:

\begin{align}\nabla_{\theta_j} J(\theta) = - \frac{1}{m} \sum_{i=1}^{m}{ \left[ x^{(i)} \left( 1\{ y^{(i)} = j\}  - p(y^{(i)} = j | x^{(i)}; \theta) \right) \right]  }\end{align}


让我们来回顾一下符号 "\textstyle \nabla_{\theta_j}" 的含义。\textstyle \nabla_{\theta_j} J(\theta) 本身是一个向量,它的第 \textstyle l 个元素 \textstyle \frac{\partial J(\theta)}{\partial \theta_{jl}} 是 \textstyle J(\theta)\textstyle \theta_j 的第 \textstyle l 个分量的偏导数。


有了上面的偏导数公式以后,我们就可以将它代入到梯度下降法等算法中,来最小化 \textstyle J(\theta)。 例如,在梯度下降法的标准实现中,每一次迭代需要进行如下更新: \textstyle \theta_j := \theta_j - \alpha \nabla_{\theta_j} J(\theta)(\textstyle j=1,\ldots,k)。

当实现 softmax 回归算法时, 我们通常会使用上述代价函数的一个改进版本。具体来说,就是和权重衰减(weight decay)一起使用。我们接下来介绍使用它的动机和细节。


Softmax回归模型参数化的特点

Softmax 回归有一个不寻常的特点:它有一个“冗余”的参数集。为了便于阐述这一特点,假设我们从参数向量 \textstyle \theta_j 中减去了向量 \textstyle \psi,这时,每一个 \textstyle \theta_j 都变成了 \textstyle \theta_j - \psi(\textstyle j=1, \ldots, k)。此时假设函数变成了以下的式子:

\begin{align}p(y^{(i)} = j | x^{(i)} ; \theta)&= \frac{e^{(\theta_j-\psi)^T x^{(i)}}}{\sum_{l=1}^k e^{ (\theta_l-\psi)^T x^{(i)}}}  \\&= \frac{e^{\theta_j^T x^{(i)}} e^{-\psi^Tx^{(i)}}}{\sum_{l=1}^k e^{\theta_l^T x^{(i)}} e^{-\psi^Tx^{(i)}}} \\&= \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{ \theta_l^T x^{(i)}}}.\end{align}


换句话说,从 \textstyle \theta_j 中减去 \textstyle \psi 完全不影响假设函数的预测结果!这表明前面的 softmax 回归模型中存在冗余的参数。更正式一点来说, Softmax 模型被过度参数化了。对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数 \textstyle h_\theta


进一步而言,如果参数 \textstyle (\theta_1, \theta_2,\ldots, \theta_k) 是代价函数 \textstyle J(\theta) 的极小值点,那么 \textstyle (\theta_1 - \psi, \theta_2 - \psi,\ldots,\theta_k - \psi) 同样也是它的极小值点,其中 \textstyle \psi 可以为任意向量。因此使 \textstyle J(\theta) 最小化的解不是唯一的。(有趣的是,由于 \textstyle J(\theta) 仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题。但是 Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题)


注意,当 \textstyle \psi = \theta_1 时,我们总是可以将 \textstyle \theta_1替换为\textstyle \theta_1 - \psi = \vec{0}(即替换为全零向量),并且这种变换不会影响假设函数。因此我们可以去掉参数向量 \textstyle \theta_1 (或者其他 \textstyle \theta_j 中的任意一个)而不影响假设函数的表达能力。实际上,与其优化全部的 \textstyle k\times(n+1) 个参数 \textstyle (\theta_1, \theta_2,\ldots, \theta_k) (其中 \textstyle \theta_j \in \Re^{n+1}),我们可以令 \textstyle \theta_1 =\vec{0},只优化剩余的 \textstyle (k-1)\times(n+1) 个参数,这样算法依然能够正常工作。


在实际应用中,为了使算法实现更简单清楚,往往保留所有参数 \textstyle (\theta_1, \theta_2,\ldots, \theta_n),而不任意地将某一参数设置为 0。但此时我们需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。


权重衰减

我们通过添加一个权重衰减项 \textstyle \frac{\lambda}{2} \sum_{i=1}^k \sum_{j=0}^{n} \theta_{ij}^2 来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:

\begin{align}J(\theta) = - \frac{1}{m} \left[ \sum_{i=1}^{m} \sum_{j=1}^{k} 1\left\{y^{(i)} = j\right\} \log \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{ \theta_l^T x^{(i)} }}  \right]              + \frac{\lambda}{2} \sum_{i=1}^k \sum_{j=0}^n \theta_{ij}^2\end{align}


有了这个权重衰减项以后 (\textstyle \lambda > 0),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为\textstyle J(\theta)是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。


为了使用优化算法,我们需要求得这个新函数 \textstyle J(\theta) 的导数,如下:

\begin{align}\nabla_{\theta_j} J(\theta) = - \frac{1}{m} \sum_{i=1}^{m}{ \left[ x^{(i)} ( 1\{ y^{(i)} = j\}  - p(y^{(i)} = j | x^{(i)}; \theta) ) \right]  } + \lambda \theta_j\end{align}


通过最小化 \textstyle J(\theta),我们就能实现一个可用的 softmax 回归模型。


Softmax回归与Logistic 回归的关系

当类别数 \textstyle k = 2 时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。具体地说,当 \textstyle k = 2 时,softmax 回归的假设函数为:

\begin{align}h_\theta(x) &=\frac{1}{ e^{\theta_1^Tx}  + e^{ \theta_2^T x^{(i)} } }\begin{bmatrix}e^{ \theta_1^T x } \\e^{ \theta_2^T x }\end{bmatrix}\end{align}


利用softmax回归参数冗余的特点,我们令 \textstyle \psi = \theta_1,并且从两个参数向量中都减去向量 \textstyle \theta_1,得到:

\begin{align}h(x) &=\frac{1}{ e^{\vec{0}^Tx}  + e^{ (\theta_2-\theta_1)^T x^{(i)} } }\begin{bmatrix}e^{ \vec{0}^T x } \\e^{ (\theta_2-\theta_1)^T x }\end{bmatrix} \\&=\begin{bmatrix}\frac{1}{ 1 + e^{ (\theta_2-\theta_1)^T x^{(i)} } } \\\frac{e^{ (\theta_2-\theta_1)^T x }}{ 1 + e^{ (\theta_2-\theta_1)^T x^{(i)} } }\end{bmatrix} \\&=\begin{bmatrix}\frac{1}{ 1  + e^{ (\theta_2-\theta_1)^T x^{(i)} } } \\1 - \frac{1}{ 1  + e^{ (\theta_2-\theta_1)^T x^{(i)} } } \\\end{bmatrix}\end{align}


因此,用 \textstyle \theta'来表示\textstyle \theta_2-\theta_1,我们就会发现 softmax 回归器预测其中一个类别的概率为 \textstyle \frac{1}{ 1  + e^{ (\theta')^T x^{(i)} } },另一个类别概率的为 \textstyle 1 - \frac{1}{ 1 + e^{ (\theta')^T x^{(i)} } },这与 logistic回归是一致的。


Softmax 回归 vs. k 个二元分类器

如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?

这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)

如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。

现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?

在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。


中英文对照

Softmax回归 Softmax Regression
有监督学习 supervised learning
无监督学习 unsupervised learning
深度学习 deep learning
logistic回归 logistic regression
截距项 intercept term
二元分类 binary classification
类型标记 class labels
估值函数/估计值 hypothesis
代价函数 cost function
多元分类 multi-class classification
权重衰减 weight decay


中文译者

曾俊瑀(knighterzjy@gmail.com), 王方(fangkey@gmail.com),王文中(wangwenzhong@ymail.com)


展开阅读全文

没有更多推荐了,返回首页