Hadoop2.7.7 API: mapred-site.xml 解析

Hadoop官方API 同时被 2 个专栏收录
37 篇文章 0 订阅
14 篇文章 0 订阅
name描述value备注
mapreduce.jobtracker.jobhistory.location如果作业跟踪器是静态的,则历史文件存储在这个众所周知的地方。如果此处未设置任何值,则默认情况下,它位于$ {hadoop.log.dir} / history的本地文件系统中。  
mapreduce.jobtracker.jobhistory.task.numberprogresssplits每个任务尝试从0.0进展到1.0 [除非它失败或被杀死]。对于每个任务尝试,我们记录进度范围的每个十二分之一的某些统计数据。您可以通过设置此属性来更改我们划分整个进度范围的间隔数。较高的值可为记录的数据提供更高的精度,但在运行时会在作业跟踪器中花费更多内存。此属性中的每个增量每个运行任务花费16个字节。12 
mapreduce.job.userhistorylocation用户可以指定存储特定作业的历史文件的位置。如果未指定任何内容,则日志将存储在输出目录中。这些文件存储在目录中的“_logs / history /”中。用户可以通过给出值“none”来停止记录。  
mapreduce.jobtracker.jobhistory.completed.location已完成的作业历史记录文件存储在此单个众所周知的位置。如果未指定任何内容,则文件存储在$ {mapreduce.jobtracker.jobhistory.location} / done中。  
mapreduce.job.committer.setup.cleanup.needed是的,如果工作需要工作设置和工作清理。是假的,否则TRUE 
mapreduce.task.io.sort.factor排序文件时一次合并的流的数量。这决定了打开文件句柄的数量。10100
mapreduce.task.io.sort.mb排序文件时使用的缓冲区内存总量,以兆字节为单位。默认情况下,为每个合并流提供1MB,这应该最小化搜索。100 
mapreduce.map.sort.spill.percent序列化缓冲区中的软限制。一旦到达,线程将开始在后台将内容溢出到磁盘。请注意,如果溢出已在进行中超过此阈值,则收集不会阻止,因此当设置为小于.5时,溢出可能会大于此阈值。0.80.7
mapreduce.jobtracker.addressMapReduce作业跟踪器运行的主机和端口。如果是“本地”,则作业将作为单个映射在进程中运行并减少任务。local 
mapreduce.local.clientfactory.class.name这是负责创建本地作业运行者客户端的客户端工厂org.apache.hadoop.mapred.LocalClientFactory 
mapreduce.jobtracker.http.address作业跟踪器http服务器将侦听的服务器地址和端口。如果端口为0,则服务器将在空闲端口上启动。0.0.0.0:50030 
mapreduce.jobtracker.handler.countJobTracker的服务器线程数。这应该是tasktracker节点数量的大约4%。10 
mapreduce.tasktracker.report.address任务跟踪服务器侦听的接口和端口。由于它仅由任务连接,因此它使用本地接口。专家。只有在主机没有环回接口时才应更改。127.0.0.1:0 
mapreduce.cluster.local.dirMapReduce存储中间数据文件的本地目录。可能是不同设备上以逗号分隔的目录列表,以便传播磁盘i / o。不存在的目录将被忽略。${hadoop.tmp.dir}/mapred/local 
mapreduce.jobtracker.system.dirMapReduce存储控制文件的目录。${hadoop.tmp.dir}/mapred/system 
mapreduce.jobtracker.staging.root.dir用户作业文件的暂存区域的根实际上,
这应该是用户主目录所在的目录(usually / user)
${hadoop.tmp.dir}/mapred/staging 
mapreduce.cluster.temp.dir临时文件的共享目录。${hadoop.tmp.dir}/mapred/temp 
mapreduce.tasktracker.local.dir.minspacestart如果mapreduce.cluster.local.dir中的空格在此下面,则不要求更多任务。以字节为单位的值0 
mapreduce.tasktracker.local.dir.minspacekill如果mapreduce.cluster.local.dir中的空格在此下面,请不要询问更多任务,直到所有当前的任务完成并清理完毕。另外,为了保存我们运行的其余任务,杀死其中一个,以清理一些空间。从reduce任务开始,然后选择那些已完成最少的任务。以字节为单位的值0 
mapreduce.jobtracker.expire.trackers.interval专家:时间间隔(以毫秒为单位),如果不发送心跳,则将任务跟踪器声明为“丢失”。600000 
mapreduce.tasktracker.instrumentation专家:与每个TaskTracker关联的检测类。org.apache.hadoop.mapred.TaskTrackerMetricsInst 
mapreduce.tasktracker.resourcecalculatorplugin其实例将用于查询tasktracker上的资源信息的类的名称。该类必须是org.apache.hadoop.util.ResourceCalculatorPlugin的实例。如果值为null,则tasktracker尝试使用适合于平台的类。目前,唯一支持的平台是Linux。  
mapreduce.tasktracker.taskmemorymanager.monitoringinterval任务跟踪器在监视其任务的内存使用情况的两个周期之间等待的时间间隔(以毫秒为单位)。仅在通过mapred.tasktracker.tasks.maxmemory启用任务的内存管理时使用。5000 
mapreduce.tasktracker.tasks.sleeptimebeforesigkill在发送SIGTERM之后,tasktracker等待向任务发送SIGKILL的时间(以毫秒为单位)。目前在WINDOWS上不使用它,其中任务只是发送SIGTERM。5000 
mapreduce.job.maps每个作业的默认地图任务数。当mapreduce.jobtracker.address是“local”时忽略。2 
mapreduce.job.reduces每个作业的默认减少任务数。通常设置为群集减少容量的99%,因此如果节点发生故障,则仍可以在单个波浪中执行减少。当mapreduce.jobtracker.address是“local”时忽略。1 
mapreduce.jobtracker.restart.recover“true”在重启时启用(作业)恢复,“false”重新启动FALSE 
mapreduce.jobtracker.jobhistory.block.size作业历史记录文件的块大小。由于作业恢复使用作业历史记录,因此尽快将作业历史记录转储到磁盘非常重要。请注意,这是专家级参数。默认值设置为3 MB。3145728 
mapreduce.jobtracker.taskscheduler负责安排任务的类。org.apache.hadoop.mapred.JobQueueTaskScheduler 
mapreduce.job.running.map.limit每个作业的最大同时映射任务数。如果此值为0或为负,则没有限制。0 
mapreduce.job.running.reduce.limit每个作业同时执行减少任务的最大数量。如果此值为0或为负,则没有限制。0 
mapreduce.job.reducer.preempt.delay.sec阈值(以秒为单位),当没有预期的净空时,未满足的映射器请求触发减速器抢占。如果设置为0或负值,则一旦检测到缺少净空,就会抢占减速器。默认值为0。0 
mapreduce.job.reducer.unconditional-preempt.delay.sec不满意的映射器请求触发强制减速器抢占的阈值(以秒为单位),而与预期的净空值无关。默认情况下,它设置为5分钟。将其设置为0会导致立即减速器抢占。设置为-1会完全禁用此抢占。300 
mapreduce.job.max.split.locations为每个拆分存储的最大块位置数以进行位置计算。10 
mapreduce.job.split.metainfo.maxsize拆分元信息文件的最大允许大小。JobTracker不会尝试读取大于配置值的拆分元信息文件。如果设置为-1,则无限制。10000000 
mapreduce.jobtracker.taskscheduler.maxrunningtasks.perjob作业被抢占之前的最大运行任务数。没有限制,如果未定义。  
mapreduce.map.maxattempts专家:每个地图任务的最大尝试次数。换句话说,框架将在放弃之前尝试执行这么多次的map任务。4 
mapreduce.reduce.maxattempts专家:每次减少任务的最大尝试次数。换句话说,框架将尝试在放弃之前多次执行reduce任务。4 
mapreduce.reduce.shuffle.fetch.retry.enabled设置为在主机重新启动期间启用提取重试。${yarn.nodemanager.recovery.enabled}1
mapreduce.reduce.shuffle.fetch.retry.interval-ms由于某些事件(如NM重启),当某些非致命故障发生时,提取器重试再次获取的时间间隔。1000 
mapreduce.reduce.shuffle.fetch.retry.timeout-ms当由于某些事件(如NM重新启动)而发生某些非致命故障时,fetcher重试再次获取的超时值。30000 
mapreduce.reduce.shuffle.retry-delay.max.ms在重试下载地图数据之前,reducer将延迟的最大ms数。60000 
mapreduce.reduce.shuffle.parallelcopies在复制(随机播放)阶段,默认的并行传输数由reduce运行。5 
mapreduce.reduce.shuffle.connect.timeout专家:减少任务在尝试连接到任务跟踪器以获取地图输出时花费的最长时间(以毫秒为单位)。180000 
mapreduce.reduce.shuffle.read.timeout专家:减少任务等待地图输出数据在获得连接后可用于读取的最长时间(以毫秒为单位)。180000 
mapreduce.shuffle.listen.queue.sizeshuffle服务器侦听队列的长度。128 
mapreduce.shuffle.connection-keep-alive.enable设置为true以支持保持活动连接。FALSE 
mapreduce.shuffle.connection-keep-alive.timeoutshuffle客户端尝试保留http连接的秒数。请参阅Http规范中的“Keep-Alive:timeout =”标头5 
mapreduce.task.timeout如果任务既不读取输入,也不写入输出,也不更新其状态字符串,则终止任务前的毫秒数。值为0将禁用超时。600000300000
mapreduce.tasktracker.map.tasks.maximum任务跟踪器将同时运行的最大映射任务数。2 
mapreduce.tasktracker.reduce.tasks.maximum任务跟踪器将同时运行的最大reduce任务数。2 
mapreduce.map.memory.mb从调度程序为每个映射任务请求的内存量。10245120
mapreduce.map.cpu.vcores每个映射任务从调度程序请求的虚拟核心数。1 
mapreduce.reduce.memory.mb每个reduce任务从调度程序请求的内存量。1024 
mapreduce.reduce.cpu.vcores每个reduce任务从调度程序请求的虚拟核心数。1 
mapreduce.jobtracker.retiredjobs.cache.size要保留在缓存中的已退役作业状态数。1000 
mapreduce.tasktracker.outofband.heartbeat专家:将此设置为true可让任务跟踪器在任务完成时发送带外心跳以获得更好的延迟。FALSE 
mapreduce.jobtracker.jobhistory.lru.cache.size内存中加载的作业历史记录文件数。首次访问作业时会加载作业。基于LRU清除缓存。5 
mapreduce.jobtracker.instrumentation专家:与每个JobTracker关联的检测类。org.apache.hadoop.mapred.JobTrackerMetricsInst 
mapred.child.java.optsTask 进程可选 java 参数。#NAME?-Xmx4096M
mapred.child.env用户为任务流程添加了环境变量。示例:1)A = foo这将env变量A设置为foo 2)B = $ B:c这是在Unix上继承nodemanager的B env变量。3)B =%B%; c这是Windows上的继承nodemanager的B env变量。  
mapreduce.admin.user.env专家:用于映射和减少任务进程的附加执行环境条目。这不是附加属性。如果希望map和reduce任务可以访问本机库(压缩等),则必须保留原始值。当此值为空时,设置执行环境的命令将取决于操作系统:对于linux,use LD_LIBRARY_PATH=$HADOOP_COMMON_HOME/lib/native. For windows, use PATH = %PATH%;%HADOOP_COMMON_HOME%\\bin.  
mapreduce.map.log.level映射任务的日志记录级别。允许的级别为:OFF,FATAL,ERROR,WARN,INFO,DEBUG,TRACE和ALL。如果设置了“mapreduce.job.log4j-properties-file”,则可以覆盖此处的设置。INFO 
mapreduce.reduce.log.levelreduce任务的日志记录级别。允许的级别为:OFF,FATAL,ERROR,WARN,INFO,DEBUG,TRACE和ALL。如果设置了“mapreduce.job.log4j-properties-file”,则可以覆盖此处的设置。INFO 
mapreduce.map.cpu.vcores每个映射任务所需的虚拟核心数。1 
mapreduce.reduce.cpu.vcores每个reduce任务所需的虚拟核心数。1 
mapreduce.reduce.merge.inmem.threshold阈值,就内存中合并过程的文件数而言。当我们累积阈值数量的文件时,我们启动内存中合并并溢出到磁盘。值0或小于0表示我们希望不具有任何阈值,而是仅依赖于ramfs的内存消耗来触发合并。1000 
mapreduce.reduce.shuffle.merge.percent将启动内存中合并的使用阈值,表示为分配给存储内存映射输出的总内存的百分比,由mapreduce.reduce.shuffle.input.buffer.percent定义。0.66 
mapreduce.reduce.shuffle.input.buffer.percent在shuffle期间从最大堆大小分配到存储映射输出的内存百分比。0.7 
mapreduce.reduce.input.buffer.percent内存百分比 - 相对于最大堆大小 - 在reduce期间保留映射输出。当shuffle结束时,内存中的任何剩余映射输出必须消耗小于该阈值才能开始reduce。00.0
mapreduce.reduce.shuffle.memory.limit.percent专家:单个shuffle可以消耗的内存限制的最大百分比0.25 
mapreduce.shuffle.ssl.enabled是否将SSL用于Shuffle HTTP端点。FALSE 
mapreduce.shuffle.ssl.file.buffer.size使用SSL时从文件读取溢出的缓冲区大小。65536 
mapreduce.shuffle.max.connections最大允许连接为shuffle。设置为0(零)表示连接数没有限制。0 
mapreduce.shuffle.max.threadsMax允许的线程用于提供shuffle连接。设置为零表示默认值为可用处理器数量的2倍(由Runtime.availableProcessors()报告)。Netty用于处理请求,因此每个连接都不需要线程。0 
mapreduce.shuffle.transferTo.allowed此选项可以在随机播放阶段启用/禁用nio transferTo方法。NIO transferTo在洗牌阶段在窗口上表现不佳。因此,使用此配置属性可以禁用它,在这种情况下将使用自定义传输方法。在Windows上运行Hadoop时,建议值为false。对于Linux,建议将其设置为true。如果未设置任何内容,则Windows的默认值为false,Linux的默认值为true。  
mapreduce.shuffle.transfer.buffer.size仅当mapreduce.shuffle.transferTo.allowed设置为false时才使用此属性。在这种情况下,此属性定义在shuffle阶段的缓冲区复制代码中使用的缓冲区的大小。此缓冲区的大小决定了IO请求的大小。131072 
mapreduce.reduce.markreset.buffer.percent内存百分比 - 与最大堆大小相关 - 在使用标记重置功能时用于缓存值。0 
mapreduce.map.speculative如果为true,则可以并行执行一些映射任务的多个实例。TRUEfalse
mapreduce.reduce.speculative如果为true,则可以并行执行某些reduce任务的多个实例。TRUEfalse
mapreduce.job.speculative.speculative-cap-running-tasks可以随时推测性地重新执行的运行任务的最大百分比(0-1)。0.1 
mapreduce.job.speculative.speculative-cap-total-tasks可以在任何时间推测性地重新执行的所有任务的最大百分比(0-1)。0.01 
mapreduce.job.speculative.minimum-allowed-tasks可以随时以推测方式重新执行的最小允许任务。10 
mapreduce.job.speculative.retry-after-no-speculate如果在本轮中没有推测任务,则等待时间(ms)进行下一轮推测。1000 
mapreduce.job.speculative.retry-after-speculate如果本轮推测有任务,则等待时间(ms)进行下一轮猜测。15000 
mapreduce.job.map.output.collector.class要使用的MapOutputCollector实现。这可能是以逗号分隔的类名列表,在这种情况下,map任务将尝试依次初始化每个收集器。将使用第一个成功初始化。org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
mapreduce.job.speculative.slowtaskthreshold任务的进度速率必须低于所有正在运行的任务的平均值的标准偏差数,以使任务被认为太慢。1 
mapreduce.job.jvm.numtasks每个jvm运行多少个任务。如果设置为-1,则没有限制。1 
mapreduce.job.ubertask.enable是否启用小作业“ubertask”优化,该优化在单个JVM中按顺序运行“足够小”的作业。“小”由以下maxmaps,maxreduces和maxbytes设置定义。请注意,应用程序主服务器的配置也会影响“小”定义 - yarn.app.mapreduce.am.resource.mb必须大于mapreduce.map.memory.mb和mapreduce.reduce.memory.mb以及yarn.app .mapreduce.am.resource.cpu-vcores必须大于mapreduce.map.cpu.vcores和mapreduce.reduce.cpu.vcores以启用ubertask。用户可以覆盖此值。FALSE 
mapreduce.job.ubertask.maxmaps地图数量的阈值,超出该地图的工作被认为对于ubertasking优化来说太大了。用户可以覆盖此值,但只能向下。9 
mapreduce.job.ubertask.maxreduces减少数量的阈值,超出该阈值的工作被认为对于ubertasking优化来说太大了。目前,该代码不能支持多于一个,并且会忽略更大的值。(但是,零是有效的最大值。)用户可以覆盖此值,但只能向下。1 
mapreduce.job.ubertask.maxbytes输入字节数的阈值,超出该阈值的工作被认为对于ubertasking优化来说太大了。如果未指定任何值,则dfs.block.size将用作默认值。如果底层文件系统不是HDFS,请务必在mapred-site.xml中指定默认值。用户可以覆盖此值,但只能向下。  
mapreduce.job.emit-timeline-data指定Application Master是否应将时间轴数据发送到时间轴服务器。单个作业可以覆盖此值。FALSE 
mapreduce.input.fileinputformat.split.minsize应将映射输入的最小大小块拆分为。请注意,某些文件格式可能具有优先于此设置的最小分割大小。0 
mapreduce.input.fileinputformat.list-status.num-threads用于列出和获取指定输入路径的块位置的线程数。注意:如果使用自定义非线程安全路径过滤器,则不应使用多个线程。1 
mapreduce.jobtracker.maxtasks.perjob单个作业的最大任务数。值-1表示没有最大值。-1 
mapreduce.input.lineinputformat.linespermap使用NLineInputFormat时,每个拆分中包含的输入数据行数。1 
mapreduce.client.submit.file.replication提交的作业文件的复制级别。这应该在节点数的平方根附近。10 
mapreduce.tasktracker.dns.interface任务跟踪器应从中报告其IP地址的网络接口的名称。default 
mapreduce.tasktracker.dns.nameserver名称服务器(DNS)的主机名或IP地址,TaskTracker应使用该地址确定JobTracker用于通信和显示目的的主机名。default 
mapreduce.tasktracker.http.threadshttp服务器的工作线程数。这用于地图输出提取40 
mapreduce.tasktracker.http.address任务跟踪器http服务器地址和端口。如果端口为0,则服务器将在空闲端口上启动。0.0.0.0:50060 
mapreduce.task.files.preserve.failedtasks是否应保留失败任务的文件。这应仅用于失败的作业,因为存储永远不会被回收。它还可以防止映射输出在使用时从reduce目录中删除。FALSE 
mapreduce.output.fileoutputformat.compress工作输出应该被压缩吗?FALSE 
mapreduce.output.fileoutputformat.compress.type如果作业输出要压缩为SequenceFiles,它们应该如何压缩?应该是NONE,RECORD或BLOCK之一。RECORDBLOCK
mapreduce.output.fileoutputformat.compress.codec如果作业输出被压缩,它们应该如何压缩?org.apache.hadoop.io.compress.DefaultCodec 
mapreduce.map.output.compress是否应在通过网络发送之前压缩地图的输出。使用SequenceFile压缩。FALSE 
mapreduce.map.output.compress.codec如果地图输出被压缩,它们应该如何压缩?org.apache.hadoop.io.compress.DefaultCodec 
map.sort.class排序键的默认排序类。org.apache.hadoop.util.QuickSort 
mapreduce.task.userlog.limit.kb每个任务的最大用户日志大小(KB)。0禁用上限。0 
yarn.app.mapreduce.am.container.log.limit.kbMRAppMaster尝试容器的最大大小以KB为单位记录。0禁用上限。0 
yarn.app.mapreduce.task.container.log.backups使用ContainerRollingLogAppender(CRLA)时任务日志的备份文件数。请参阅org.apache.log4j.RollingFileAppender.maxBackupIndex。默认情况下,使用ContainerLogAppender(CLA),并且不会滚动容器日志。当mapreduce.task.userlog.limit.kb和yarn.app.mapreduce.task.container.log.backups都大于零时,CRLA将启用任务。0 
yarn.app.mapreduce.am.container.log.backups使用ContainerRollingLogAppender(CRLA)时,ApplicationMaster日志的备份文件数。请参阅org.apache.log4j.RollingFileAppender.maxBackupIndex。默认情况下,使用ContainerLogAppender(CLA),并且不会滚动容器日志。当mapreduce.task.userlog.limit.kb和yarn.app.mapreduce.am.container.log.backups都大于零时,为ApplicationMaster启用CRLA。0 
yarn.app.mapreduce.shuffle.log.separate如果启用('true')由reducer中的客户端shuffle类生成的日志记录将写入专用日志文件'syslog.shuffle'而不是'syslog'。TRUE 
yarn.app.mapreduce.shuffle.log.limit.kbsyslog.shuffle文件的最大大小(以KB为单位)(0表示无限制)。0 
yarn.app.mapreduce.shuffle.log.backups如果yarn.app.mapreduce.shuffle.log.limit.kb和yarn.app.mapreduce.shuffle.log.backups大于零,则使用ContainerRollngLogAppender而不是ContainerLogAppender用于syslog.shuffle。请参阅org.apache.log4j.RollingFileAppender.maxBackupIndex0 
mapreduce.job.userlog.retain.hours作业完成后保留用户日志的最长时间(以小时为单位)。24 
mapreduce.jobtracker.hosts.filename命名一个文件,其中包含可能连接到jobtracker的节点列表。如果该值为空,则允许所有主机。  
mapreduce.jobtracker.hosts.exclude.filename命名一个文件,其中包含jobtracker应排除的主机列表。如果值为空,则不排除任何主机。  
mapreduce.jobtracker.heartbeats.in.second专家:大约可以在一秒钟内到达JobTracker的心跳数。假设每个RPC可以在10毫秒内处理,则默认值在一秒内变为100个RPC。100 
mapreduce.jobtracker.tasktracker.maxblacklists各种作业的taskTracker黑名单的数量,之后任务跟踪器可以在所有作业中列入黑名单。跟踪器将在稍后(一天之后)完成任务。重启后,跟踪器将成为健康的追踪器。4 
mapreduce.job.maxtaskfailures.per.tracker给定作业的任务跟踪器上的任务失败次数,之后不会为该作业分配新任务。它必须小于mapreduce.map.maxattempts和mapreduce.reduce.maxattempts,否则永远不会在另一个节点上尝试失败的任务。3 
mapreduce.client.output.filter用于控制发送到JobClient控制台的任务的用户日志输出的过滤器。允许的选项包括:NONE,KILLED,FAILED,SUCCEEDED和ALL。FAILED 
mapreduce.client.completion.pollintervalJobClient轮询JobTracker以获取有关作业状态的更新的时间间隔(以毫秒为单位)。您可能希望将此值设置为较低的值,以使测试在单个节点系统上运行得更快。在生产中调整此值可能会导致不必要的客户端 - 服务器流量。5000 
mapreduce.client.progressmonitor.pollintervalJobClient向控制台报告状态并检查作业完成的时间间隔(以毫秒为单位)。您可能希望将此值设置为较低的值,以使测试在单个节点系统上运行得更快。在生产中调整此值可能会导致不必要的客户端 - 服务器流量。1000 
mapreduce.jobtracker.persist.jobstatus.active指示作业状态信息的持久性是否有效。TRUE 
mapreduce.jobtracker.persist.jobstatus.hours作业状态信息的小时数在DFS中保留。在丢弃内存队列之后和jobtracker重新启动之间,作业状态信息将可用。如果值为零,则DFS中的作业状态信息根本不会保留。1 
mapreduce.jobtracker.persist.jobstatus.dir作业状态信息在文件系统中保留的目录,在文件系统丢弃内存队列之后以及在jobtracker重新启动之间可用。/jobtracker/jobsInfo 
mapreduce.task.profile要设置系统是否应收集此作业中某些任务的探查器信息?该信息存储在用户日志目录中。如果启用了任务分析,则该值为“true”。FALSE 
mapreduce.task.profile.maps将地图任务的范围设置为配置文件。必须将mapreduce.task.profile设置为true才能计算值。0-2 
mapreduce.task.profile.reduces将reduce任务的范围设置为profile。必须将mapreduce.task.profile设置为true才能计算值。0-2 
mapreduce.task.profile.params用于配置映射和减少任务尝试的JVM概要分析器参数。此字符串可能包含单个格式说明符%s,将由任务尝试日志目录中的profile.out路径替换。要为map任务指定不同的性能分析选项并减少任务,应使用更具体的参数mapreduce.task.profile.map.params和mapreduce.task.profile.reduce.params。-agentlib:hprof=cpu=samples,heap=sites,force=n,thread=y,verbose=n,file=%s 
mapreduce.task.profile.map.params特定于映射任务的JVM概要分析器参数。请参见mapreduce.task.profile.params${mapreduce.task.profile.params} 
mapreduce.task.profile.reduce.params特定于Reduce-task的JVM Profiler参数。请参见mapreduce.task.profile.params${mapreduce.task.profile.params} 
mapreduce.task.skip.start.attempts启动跳过模式后的任务尝试次数。当跳过模式启动时,任务会向TaskTracker报告它将接下来要处理的记录范围。因此,在失败时,TT知道哪些可能是坏记录。在进一步执行时,将跳过这些。2 
mapreduce.map.skip.proc.count.autoincr设置为true的标志,SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS在调用map函数后由MapRunner递增。对于以异步方式处理记录或缓冲输入记录的应用程序,此值必须设置为false。例如流式传输。在这种情况下,应用程序应自行增加此计数器。TRUE 
mapreduce.reduce.skip.proc.count.autoincr设置为true的标志,SkipBadRecords.COUNTER_REDUCE_PROCESSED_GROUPS在调用reduce函数后按框架递增。对于以异步方式处理记录或缓冲输入记录的应用程序,此值必须设置为false。例如流式传输。在这种情况下,应用程序应自行增加此计数器。TRUE 
mapreduce.job.skip.outdir如果此处未指定任何值,则跳过的记录将在_logs / skip处写入输出目录。用户可以通过给出值“none”来停止写入跳过的记录。  
mapreduce.map.skip.maxrecords映射器中错误记录PER坏记录周围的可接受跳过记录数。该号码也包括不良记录。要关闭检测/跳过坏记录的功能,请将值设置为0.框架会尝试通过重试来缩小跳过的范围,直到达到此阈值或此任务的所有尝试都用完为止。将值设置为Long.MAX_VALUE以指示框架不需要尝试缩小范围。无论什么记录(取决于应用程序)被跳过都是可以接受的。0 
mapreduce.reduce.skip.maxgroupsreducer中坏组PER坏组周围可接受的跳过组数。该数字也包括坏组。要关闭检测/跳过坏组的功能,请将值设置为0.框架会尝试通过重试来缩小跳过的范围,直到达到此阈值或此任务的所有尝试都用完为止。将值设置为Long.MAX_VALUE以指示框架不需要尝试缩小范围。无论哪个组(取决于应用程序)被跳过都是可以接受的。0 
mapreduce.ifile.readahead用于启用/禁用IFile预读的配置键。TRUE 
mapreduce.ifile.readahead.bytes配置键,以字节为单位设置IFile预读长度。4194304 
mapreduce.jobtracker.taskcache.levels这是任务缓存的最大级别。例如,如果级别为2,则缓存的任务位于主机级别和机架级别。2 
mapreduce.job.queuename提交作业的队列。这必须与mapred-queues.xml中为系统定义的队列之一匹配。此外,队列的ACL设置必须允许当前用户将作业提交到队列。在指定队列之前,请确保使用队列配置系统,并允许访问以将作业提交到队列。default 
mapreduce.job.tags作业的标签将在提交时传递给YARN。对应用程序的YARN查询可以过滤这些标记。  
mapreduce.cluster.acls.enabled指定是否应检查ACL以授权用户执行各种队列和作业级别操作。默认情况下禁用ACL。如果启用,则当用户针对队列操作(例如将作业提交到队列)以及终止队列中的作业以及查看作业详细信息等作业操作(请参阅mapreduce.job.acl)时,JobTracker和TaskTracker会进行访问控制检查。 -view-job)或使用Map / Reduce API,RPC或通过控制台和Web用户界面修改作业(请参阅mapreduce.job.acl-modify-job)。要启用此标志(mapreduce.cluster.acls.enabled),请在JobTracker节点和所有TaskTracker节点上的mapred-site.xml中将其设置为true。FALSE 
mapreduce.job.acl-modify-job用于“修改”作业的作业特定访问控制列表。仅当通过将配置属性mapreduce.cluster.acls.enabled设置为true在Map / Reduce中启用授权时才使用它。这指定了可以对作业执行修改操作的用户和/或组的列表。要指定用户和组列表,要使用的格式为“user1,user2 group1,group”。如果设置为“*”,则允许所有用户/组修改此作业。如果设置为''(即空格),则不允许。此配置用于保护与此作业相关的所有修改,并负责以下所有操作:o终止此作业o查杀此作业的任务,失败此任务的任务o设置此作业的优先级这些操作中的每一个也受到通过mapred-queues.xml配置的每队列级别ACL“acl-administrators-jobs”的保护。因此,调用者应具有满足队列级ACL或作业级ACL的授权。无论此ACL配置如何,(a)作业所有者,(b)启动集群的用户,(c)通过mapreduce.cluster.permissions.supergroup配置的管理员配置的超级组的成员和(d)队列的队列管理员通过acl-administrators-jobs为mapred-queues.xml中的特定队列提交此作业的配置可以对作业执行所有修改操作。默认情况下,除了作业所有者之外没有其他人,启动集群的用户,  
mapreduce.job.acl-view-job用于“查看”作业的作业特定访问控制列表。仅当通过将配置属性mapreduce.cluster.acls.enabled设置为true在Map / Reduce中启用授权时才使用它。这指定了可以查看有关作业的私有详细信息的用户和/或组的列表。要指定用户和组列表,要使用的格式为“user1,user2 group1,group”。如果设置为“*”,则允许所有用户/组修改此作业。如果设置为''(即空格),则不允许。此配置用于保护某些作业视图,目前仅保护可能返回作业所有者敏感信息的API,如作业级计数器o任务级计数器o任务' 诊断信息o TaskTracker web-UI上显示的任务日志和JobTracker的web-UI显示的job.xml任何其他用户仍可访问其他任何工作信息,例如,JobStatus,JobProfile,作业列表无论此ACL配置如何,(a)作业所有者,(b)启动集群的用户,(c)通过mapreduce.cluster.permissions.supergroup和(d)配置的管理员配置的超级组的成员)通过针对mapred-queues.xml中特定队列的acl-administrators-jobs为此作业提交的队列的队列管理员可以对作业执行所有视图操作。默认情况下,除了作业所有者之外没有其他人,启动集群的用户,  
mapreduce.tasktracker.indexcache.mb任务跟踪器允许在将映射输出提供给reducers时使用的索引缓存的最大内存。10 
mapreduce.job.finish-when-all-reducers-done指定在所有Reducer完成后作业是否应该完成,无论是否仍有正在运行的映射器。FALSE 
mapreduce.job.token.tracking.ids.enabled是否将令牌的跟踪ID写入job-conf。如果为true,则将配置属性“mapreduce.job.token.tracking.ids”设置为作业的token-tracking-idFALSE 
mapreduce.job.token.tracking.ids当mapreduce.job.token.tracking.ids.enabled设置为true时,框架会将此设置为作业使用的token-tracking-id。  
mapreduce.task.merge.progress.records在向TaskTracker发送进度通知之前要在合并期间处理的记录数。10000 
mapreduce.task.combine.progress.records在发送进度通知之前组合输出收集期间要处理的记录数。10000 
mapreduce.job.reduce.slowstart.completedmaps作业中应该在减少之前完成的作业中的地图数量的分数被安排。0.05 
mapreduce.job.complete.cancel.delegation.tokens如果为false - 请勿从续订中注销/取消委派令牌,因为生成的作业可能会使用相同的令牌TRUE 
mapreduce.tasktracker.taskcontrollerTaskController,用于启动和管理任务执行org.apache.hadoop.mapred.DefaultTaskController 
mapreduce.tasktracker.group专家:TaskTracker所属的组。如果通过mapreduce.tasktracker.taskcontroller配置LinuxTaskController,则任务控制器二进制文件的组所有者应与此组相同。  
mapreduce.shuffle.portShuffleHandler将运行的默认端口。ShuffleHandler是在NodeManager上运行的服务,以便于将中间Map输出传输到请求Reducers。13562 
mapreduce.job.reduce.shuffle.consumer.plugin.class其实例将用于通过reducetasks发送shuffle请求的类的名称。该类必须是org.apache.hadoop.mapred.ShuffleConsumerPlugin的实例。org.apache.hadoop.mapreduce.task.reduce.Shuffle 
mapreduce.tasktracker.healthchecker.script.path脚本的绝对路径,由节点运行状况监视服务定期运行以确定节点是否正常。如果此键的值为空或此处配置的位置中不存在该文件,则不会启动节点运行状况监视服务。  
mapreduce.tasktracker.healthchecker.interval要运行的节点运行状况脚本的频率,以毫秒为单位60000 
mapreduce.tasktracker.healthchecker.script.timeout如果没有响应并且认为脚本失败,则应该终止节点运行状况脚本之后的时间。600000 
mapreduce.tasktracker.healthchecker.script.args以逗号分隔时要传递给节点运行状况脚本的参数列表。  
mapreduce.job.node-label-expressionMap Reduce作业的所有容器都将使用此节点标签表达式运行。如果未设置job的node-label-expression,则它将对所有作业的容器使用queue的default-node-label-expression。  
mapreduce.job.am.node-label-expression这是Map Reduce Application Master容器的节点标签配置。如果未配置,它将使用mapreduce.job.node-label-expression,如果未配置job的node-label表达式,则它将使用queue的default-node-label-expression。  
mapreduce.map.node-label-expression这是Map任务容器的节点标签配置。如果未配置,它将使用mapreduce.job.node-label-expression,如果未配置job的node-label表达式,则它将使用queue的default-node-label-expression。  
mapreduce.reduce.node-label-expression这是Reduce任务容器的节点标签配置。如果未配置,它将使用mapreduce.job.node-label-expression,如果未配置job的node-label表达式,则它将使用queue的default-node-label-expression。  
mapreduce.job.counters.limit限制每个作业允许的用户计数器数量。120 
mapreduce.framework.name用于执行MapReduce作业的运行时框架。可以是本地,classic或yarn之一。localyarn
yarn.app.mapreduce.am.staging-dir提交作业时使用的分段目录。/tmp/hadoop-yarn/staging/user
mapreduce.am.max-attempts最大应用程序尝试次数。这是一个特定于应用程序的设置。它不应大于resourcemanager设置的全局数。否则,它将被覆盖。默认数量设置为2,以允许至少一次重试AM。2 
mapreduce.job.end-notification.url表示在完成作业时将调用的url,以通知作业的结束状态。用户最多可以使用URI提供2个变量:$ jobId和$ jobStatus。如果它们存在于URI中,则它们将被它们各自的值替换。  
mapreduce.job.end-notification.retry.attempts作业提交者在失败时想要重试作业结束通知的次数。这是由mapreduce.job.end-notification.max.attempts限制的0 
mapreduce.job.end-notification.retry.interval如果作业提交者失败,则在重试作业结束通知之前要等待的毫秒数。这是由mapreduce.job.end-notification.max.retry.interval限制的1000 
mapreduce.job.end-notification.max.attempts为读取提供作业结束通知而读取URL的最大次数。集群管理员可以将此设置为限制作业结束后多长时间,Application Master在退出之前等待。必须标记为final以防止用户覆盖此内容。5 
mapreduce.job.log4j-properties-file用于覆盖nodeManager的container-log4j.properties中log4j的默认设置。与container-log4j.properties一样,它需要在此覆盖文件中正确定义某些框架appender。路径上的文件将添加到分布式缓存和类路径中。如果路径中没有给出scheme,则默认指向本地FS上的log4j文件。  
mapreduce.job.end-notification.max.retry.interval重试作业结束通知之前等待的最长时间(以毫秒为单位)。群集管理员可以将其设置为限制Application Master在退出之前等待的时间。必须标记为final以防止用户覆盖此内容。5000 
yarn.app.mapreduce.am.env用户为MR App Master进程添加了环境变量。示例:1)A = foo这将env变量A设置为foo 2)B = $ B:c这是继承tasktracker的B env变量。  
yarn.app.mapreduce.am.admin.user.env用于管理目的的MR App Master进程的环境变量。这些值首先设置,并且可以被用户env(yarn.app.mapreduce.am.env)覆盖。示例:1)A = foo这将env变量A设置为foo 2)B = $ B:c这是继承app master的B env变量。  
yarn.app.mapreduce.am.command-opts MR App Master 进程 java 可选参数设置-Xmx1024m-Xmx4096m 
yarn.app.mapreduce.am.admin-command-optsJava为管理目的选择MR App Master进程。它将出现在由yarn.app.mapreduce.am.command-opts设置的opts之前,因此它的选项可以被覆盖用户。如果使用hadoop本机库,则-Djava.library.path的使用可能导致程序不再起作用。应使用mapreduce.map.env和mapreduce.reduce.env配置设置将这些值设置为map / reduce JVM env中LD_LIBRARY_PATH的一部分。  
yarn.app.mapreduce.am.job.task.listener.thread-count用于从远程任务处理MR AppMaster中的RPC调用的线程数30 
yarn.app.mapreduce.am.job.client.port-rangeMapReduce AM绑定时可以使用的端口范围。如果您想要所有可能的端口,请留空。例如50000-50050,50100-50200  
yarn.app.mapreduce.am.job.committer.cancel-timeout在作业被终止时等待输出提交者取消操作的时间量(以毫秒为单位)60000 
yarn.app.mapreduce.am.job.committer.commit-window为输出提交操作定义时间窗口(以毫秒为单位)。如果在此窗口内发生了与RM的联系,则允许提交,否则AM将不允许输出提交,直到重新建立与RM的联系。10000 
mapreduce.fileoutputcommitter.algorithm.version文件输出提交者算法版本有效算法版本号:1或2默认为1,这是原始算法在算法版本1中,1。commitTask将目录$ joboutput / _temporary / $ appAttemptID / _temporary / $ taskAttemptID /重命名为$ joboutput / _temporary / $ appAttemptID / $ taskID / 2. recoverTask还会将$ joboutput / _temporary / $ appAttemptID / $ taskID /重命名为$ joboutput / _temporary /($ appAttemptID + 1)/ $ taskID / 3. commitJob将每次合并任务输出文件在$ joboutput / _temporary / $ appAttemptID / $ taskID /到$ joboutput /,然后它将删除$ joboutput / _temporary /并写入$ joboutput / _SUCCESS它有一个性能回归,在MAPREDUCE-4815中讨论。如果作业生成许多要提交的文件,那么在作业结束时调用commitJob方法可能需要几分钟。提交是单线程的,等待所有任务完成后再开始。算法版本2将改变commitTask,recoverTask和commitJob的行为。1. commitTask会将$ joboutput / _temporary / $ appAttemptID / _temporary / $ taskAttemptID /中的所有文件重命名为$ joboutput / 2. recoverTask实际上不需要做任何事情,但是从版本1升级到版本2的情况下,它会检查$ joboutput / _temporary /($ appAttemptID - 1)/ $ taskID /中是否有任何文件,并将它们重命名为$ joboutput / 3. commitJob可以简单地删除$ joboutput / _temporary并写入$ joboutput / _SUCCESS此算法将减少通过让任务在完成时直接提交到最终输出目录并且commitJob几乎没有做什么来输出大型作业的提交时间。算法版本2将改变commitTask,recoverTask和commitJob的行为。1. commitTask会将$ joboutput / _temporary / $ appAttemptID / _temporary / $ taskAttemptID /中的所有文件重命名为$ joboutput / 2. recoverTask实际上不需要做任何事情,但是从版本1升级到版本2的情况下,它会检查$ joboutput / _temporary /($ appAttemptID - 1)/ $ taskID /中是否有任何文件,并将它们重命名为$ joboutput / 3. commitJob可以简单地删除$ joboutput / _temporary并写入$ joboutput / _SUCCESS此算法将减少通过让任务在完成时直接提交到最终输出目录并且commitJob几乎没有做什么来输出大型作业的提交时间。算法版本2将改变commitTask,recoverTask和commitJob的行为。1. commitTask会将$ joboutput / _temporary / $ appAttemptID / _temporary / $ taskAttemptID /中的所有文件重命名为$ joboutput / 2. recoverTask实际上不需要做任何事情,但是从版本1升级到版本2的情况下,它会检查$ joboutput / _temporary /($ appAttemptID - 1)/ $ taskID /中是否有任何文件,并将它们重命名为$ joboutput / 3. commitJob可以简单地删除$ joboutput / _temporary并写入$ joboutput / _SUCCESS此算法将减少通过让任务在完成时直接提交到最终输出目录并且commitJob几乎没有做什么来输出大型作业的提交时间。1 
yarn.app.mapreduce.am.scheduler.heartbeat.interval-msMR AppMaster应将心跳发送到ResourceManager的时间间隔(毫秒)1000 
yarn.app.mapreduce.client-am.ipc.max-retries在重新连接到RM以获取应用程序状态之前,客户端重试到AM的次数。3 
yarn.app.mapreduce.client-am.ipc.max-retries-on-timeouts套接字超时到AM的客户端重试次数 - 在重新连接到RM以获取应用程序状态之前。3 
yarn.app.mapreduce.client.max-retries抛出异常之前客户端重试到RM / HS的次数。这是ipc之上的一层。3 
yarn.app.mapreduce.am.resource.mbMR AppMaster需要的内存量。15365120
yarn.app.mapreduce.am.resource.cpu-vcoresMR AppMaster所需的虚拟CPU核心数。1 
yarn.app.mapreduce.am.hard-kill-timeout-ms作业客户端终止应用程序之前等待的毫秒数。10000 
yarn.app.mapreduce.client.job.max-retries客户端将为getJob和从属调用重试的次数。默认值为0,因为这通常仅用于非HDFS DFS,其中需要额外的高级重试以避免在getJob调用期间出现虚假故障。30对于WASB来说是一个很好的价值060
yarn.app.mapreduce.client.job.retry-interval对于使用yarn.app.mapreduce.client.job.max-retries配置的重试,getJob重试之间的延迟(以ms为单位)。2000 
mapreduce.application.classpath用于MR应用程序的CLASSPATH。以逗号分隔的CLASSPATH条目列表。如果设置了mapreduce.application.framework,则必须为该归档指定适当的类路径,并且归档的名称必须存在于类路径中。如果mapreduce.app-submission.cross-platform为false,则将使用特定于平台的环境可变扩展语法来构造默认的CLASSPATH条目。
For Linux: $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*, $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*.
For Windows: %HADOOP_MAPRED_HOME%/share/hadoop/mapreduce/*, %HADOOP_MAPRED_HOME%/share/hadoop/mapreduce/lib/*.
If mapreduce.app-submission.cross-platform is true, platform-agnostic default CLASSPATH for MR applications would be used: {{HADOOP_MAPRED_HOME}}/share/hadoop/mapreduce/*, {{HADOOP_MAPRED_HOME}}/share/hadoop/mapreduce/lib/* 
  
mapreduce.app-submission.cross-platform如果启用,用户可以提交跨平台应用程序,即从Windows客户端向Linux / Unix服务器提交应用程序,反之亦然。FALSE 
mapreduce.application.framework.pathMapReduce框架存档的路径。如果设置,框架存档将自动与作业一起分发,并且此路径通常位于HDFS文件系统中的公共位置。与分布式缓存文件一样,这可以是带有片段的URL,该片段指定用于存档名称的别名。例如,hdfs:/mapred/framework/hadoop-mapreduce-2.1.1.tar.gz#mrframework会将本地化归档别名为“mrframework”。请注意,mapreduce.application.classpath必须包含指定框架的相应类路径。如果使用别名,则归档的基本名称或归档的别名必须出现在指定的类路径中。  
mapreduce.job.classloader是否在任务JVM中为用户类使用单独的(隔离的)类加载器。FALSE 
mapreduce.job.classloader.system.classes用于覆盖作业类加载器的系统类的默认定义。系统类是以逗号分隔的模式列表,指示在启用mapreduce.job.classloader时是否从系统类路径加载类,而不是从用户提供的JAR加载。正模式定义为:1。单个类名称'C'匹配'C',并且传递所有嵌套类'C $ *'在C中定义; 2.以“。”结尾的包名称。(例如,“com.example。”)匹配该包中的所有类。负模式由正模式前面的' - '定义(例如,“-com.example。”)。当且仅当一个类匹配其中一个正模式而没有一个负模式时,它被认为是一个系统类。更正式:如果类匹配其中一个正模式,则类是包含集I的成员。如果类与其中一个否定模式匹配,则该类是排除集E的成员。系统类S = I \ E的集合。  
mapreduce.jobhistory.addressMapReduce JobHistory服务器IPC主机:端口0.0.0.0:10020bj-rack001-hadoop003:10020
mapreduce.jobhistory.webapp.addressMapReduce JobHistory Server Web UI主机:端口0.0.0.0:19888bj-rack001-hadoop003:19888
mapreduce.jobhistory.keytabMapReduce JobHistory服务器的kerberos密钥表文件的位置。/etc/security/keytab/jhs.service.keytab 
mapreduce.jobhistory.principalMapReduce JobHistory Server的Kerberos主体名称。jhs/_HOST@REALM.TLD 
mapreduce.jobhistory.intermediate-done-dir ${yarn.app.mapreduce.am.staging-dir}/history/done_intermediate/mr-history/tmp
mapreduce.jobhistory.done-dir ${yarn.app.mapreduce.am.staging-dir}/history/done/mr-history/done
mapreduce.jobhistory.cleaner.enable TRUE 
mapreduce.jobhistory.cleaner.interval-ms作业历史记录清理程序检查要删除的文件的频率(以毫秒为单位)。默认为86400000(一天)。仅当文件早于mapreduce.jobhistory.max-age-ms时才会删除文件。86400000 
mapreduce.jobhistory.max-age-ms运行历史记录清理程序时,将删除早于此毫秒的作业历史记录文件。默认为604800000(1周)。604800000 
mapreduce.jobhistory.client.thread-count处理客户端API请求的线程数10 
mapreduce.jobhistory.datestring.cache.size日期字符串缓存的大小。影响将扫描以查找作业的目录数。200000 
mapreduce.jobhistory.joblist.cache.size作业列表缓存的大小20000 
mapreduce.jobhistory.loadedjobs.cache.size加载的作业缓存的大小。如果属性mapreduce.jobhistory.loadedtasks.cache.size设置为正值,则忽略此属性。5 
mapreduce.jobhistory.loadedtasks.cache.size根据总任务计数更改作业历史记录缓存限制。如果加载的任务总数超过此值,则作业缓存将缩小,直到达到此限制(缓存中最少1个作业)。如果此值为空或非正,则缓存将恢复为使用属性mapreduce.jobhistory.loadedjobs.cache.size作为作业缓存大小。有关mapreduce.jobhistory.loadedtasks.cache.size属性的两个建议:1)对于每100k的高速缓存大小,将作业历史记录服务器的堆大小设置为1.2GB。例如,mapreduce.jobhistory.loadedtasks.cache.size = 500000,堆大小= 6GB。2)确保缓存大小大于群集上运行的最大作业所需的任务数。将值设置得稍微高一点可能是个好主意(比方说,  
mapreduce.jobhistory.move.interval-ms从此中间完成目录扫描历史文件到更多以此频率完成目录。180000 
mapreduce.jobhistory.move.thread-count用于移动文件的线程数。3 
mapreduce.jobhistory.store.class用于缓存历史数据的HistoryStorage类。  
mapreduce.jobhistory.minicluster.fixed.ports是否使用minicluster固定端口FALSE 
mapreduce.jobhistory.admin.address历史服务器管理界面的地址。0.0.0.0:10033 
mapreduce.jobhistory.admin.acl谁可以成为历史服务器的管理员的ACL。* 
mapreduce.jobhistory.recovery.enable启用历史记录服务器以存储服务器状态并恢复服务器状态。如果启用,则必须指定mapreduce.jobhistory.recovery.store.class。FALSEtrue
mapreduce.jobhistory.recovery.store.classHistoryServerStateStoreService类用于存储历史服务器状态以进行恢复。org.apache.hadoop.mapreduce.v2.hs.HistoryServerFileSystemStateStoreServiceorg.apache.hadoop.mapreduce.v2.hs.HistoryServerLeveldbStateStoreService
mapreduce.jobhistory.recovery.store.fs.uri如果将HistoryServerFileSystemStateStoreService配置为恢复存储类,则将存储历史服务器状态的URI。${hadoop.tmp.dir}/mapred/history/recoverystore 
mapreduce.jobhistory.recovery.store.leveldb.path如果将HistoryServerLeveldbSystemStateStoreService配置为恢复存储类,则将存储历史服务器状态的URI。${hadoop.tmp.dir}/mapred/history/recoverystore/hadoop/mapreduce/jhs
mapreduce.jobhistory.http.policy这会为JobHistoryServer Web UI配置HTTP端点。支持以下值:
- HTTP_ONLY:仅在http上提供服务
- HTTPS_ONLY:仅在https上提供服务
HTTP_ONLY 
yarn.app.mapreduce.am.containerlauncher.threadpool-initial-size用于在app master中启动容器的线程池的初始大小。10 
mapreduce.job.redacted-properties将编辑其值的作业配置属性列表。  
  • 0
    点赞
  • 0
    评论
  • 4
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 鲸 设计师:meimeiellie 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值