Android/iOS及设计中ARGB颜色值百分比透明度换算

Android/iOS及设计中ARGB颜色值百分比透明度换算设计上经常要求对一个颜色值进行一定百分比的透明度,比如给定一个颜色0xFF0000FF(蓝色)要求80%透明,该如何处理呢?80%透明的蓝色值是多少呢?常见的颜色是RGB表示的,就比如上面的蓝色0xFF0000FF,这个颜色值是16进制表...

2018-05-12 20:00:32

阅读数 3169

评论数 0

傅里叶级数及奇欧函数的延拓

傅里叶级数及奇欧函数的延拓傅里叶级数的定义出发,求解函数f(x)的解。需要注意在对奇欧性函数延拓求解时的转换:

2018-01-23 15:20:45

阅读数 2191

评论数 0

Taylor级数定义和推演过程

Taylor级数定义和推演过程定义:从定义出发的推演过程:

2018-01-12 11:26:33

阅读数 630

评论数 0

非负项级数积分法MATLAB

非负项级数积分法MATLAB定理:计算过程可由MATLAB完成:syms n f; f=1/n^2; L=limit(f,n,+inf) A=int(f,n,[1,+inf]) S=symsum(f,n,1,+inf) L = 0 A = ...

2018-01-10 15:04:42

阅读数 680

评论数 0

反常积分收敛和发散性质MATLAB

反常积分收敛和发散性质MATLAB反常积分发散或收敛性质判别的定理:例如:MATLAB计算反常积分:syms x f1 f2; f1=1/(x^2); e1=ezplot(f,[0,10]); set(e1,'Color','r','LineWidt...

2018-01-10 10:30:27

阅读数 1320

评论数 0

无界不连续函数积分MATLAB

无界不连续函数积分MATLABMATLAB的处理很简单:syms x f; f=1/x^(1/2); e=ezplot(f,[0,1]); set(e,'Color','r','LineWidth',0.5); grid on; h...

2018-01-10 09:40:14

阅读数 1440

评论数 0

MATLAB无穷大上的反常积分

MATLAB无穷大上的反常积分MATLAB代码一样可以计算反常积分:syms x f; f=log(x) / x^2; e=ezplot(f,[1,10]); set(e,'Color','r','LineWidth',0.5); grid on; h...

2018-01-09 16:57:07

阅读数 3229

评论数 0

MATLAB计算Integration by parts积分

MATLAB计算Integration by parts积分注意案例中的对原积分方程的公式分部处理技巧。MATLAB计算过程比较简单,代码:syms x f; f=x*exp(-x); e=ezplot(f,[0,4]); set(e,'Color','r','LineWi...

2018-01-08 14:13:04

阅读数 1093

评论数 0

Integration by parts积分数学公式推导及图形解释

Integration by parts积分数学公式推导及图形解释(一)Integration by parts数学公式推导首先看Integration by parts的数学定义:下面开始推导上述公式。微分数学中的已知公式: (等式1)对(等式1)两边同时进行积分运算(以x坐标轴)得到: (等式...

2018-01-08 11:23:41

阅读数 2310

评论数 0

matlab双曲函数

matlab双曲函数matlab:x= -10:0.1:10; sinhx = (exp(x)-exp(-x))/2; coshx = (exp(x)+exp(-x))/2; tanhx = (exp(x)-exp(-x))./(exp(x)+exp(-x)); figure(1),plot(x...

2018-01-05 16:48:08

阅读数 3201

评论数 0

微分方程数值分析基础:Euler法

微分方程数值分析基础:Euler法Euler法作为数值分析的一种方法,主要解决微分方程在求出精确公式没有必要,求不到或者非常困难情况下有用。为数值分析提供了一种渐变的分析手段,但是也要看到,Euler法在多次轮回循环后,极可能积累过量误差,导致计算结果不可靠。误差累积现象和附录1的梯形逼近相似。附...

2018-01-05 12:32:24

阅读数 3186

评论数 0

Newton冷却定理微分数学公式推导

Newton冷却定理数学公式推导

2018-01-04 16:33:01

阅读数 1591

评论数 1

指数变化律在Willard Libby的C-14年代测定法中的运用

指数变化律在Willard Libby的C-14年代测定法中的运用指数变化律可以计算出放射性元素的半衰期关键常数k参数值获得k后,就可以通过指数变化律计算初始值t,t也极为开始的年限这里面的数学建模思想有一定借鉴意义。

2018-01-04 16:18:57

阅读数 1181

评论数 0

数学建模常用的指数变化律

数学建模常用的指数变化律最终,导出一个一般性的规律:指数变化律在数学建模中比较常用。另外需要注意本例中数学公式推导的过程,有一些技巧性的东西可以借鉴。

2018-01-04 15:37:55

阅读数 1379

评论数 0

积分计算两条曲线围绕y坐标轴旋转形成的立体体积

积分计算两条曲线围绕y坐标轴旋转形成的立体体积和附录文章1类似,计算两条曲线y=x^2和y=2x围绕y坐标轴形成的立方体体积,首先要计算积分的上限和下限,根据两者相交的点求出[0,4]。外层大圆R(y)=y^(1/2)和内层小圆r(y)=y/2的面积,把两者相减,得到中空圆环的面积,如图:然后根据...

2018-01-03 14:13:17

阅读数 6984

评论数 0

积分计算曲线围绕X轴旋转形成的立体体积

积分计算曲线围绕X轴旋转形成的立体体积若曲线y=x^2+1和直线y=-x+3围成的区域,再绕X坐标轴旋转一周,形成一个立体,计算该立体的体积。如图:先计算出所要求的在X坐标轴的积分上下限为[-2,1]。仔细分析可知,外部的大圆半径为R(x)=-x+3,r(x)=x^2+1。大圆R(x)-r(x)即...

2018-01-03 12:26:42

阅读数 5464

评论数 0

数值积分的梯形逼近及误差分析

数值积分的梯形逼近及误差分析引入梯形逼近的原因是,在求解一些函数的反导数时候,过程极为复杂甚至可能就不可能有简单的数学表达式,那么就需要把函数f的积分切成n个连续的小梯形,计算这n个连续的小梯形的黎曼和,从而得到积分。如图:在区间[a,b],把这段区间切分成等长为h的若干个小梯形,那么可以把[a,...

2018-01-03 10:12:37

阅读数 3851

评论数 0

积分解多条曲线围成面积且具有不同边界MATLAB

积分解多条曲线围成面积且具有不同边界MATLAB如图所示,f(x)=x^(1/2)与g(x)=x-2围成的图形,如果求所围成面积处于x坐标轴上方的部分,则直接使用黎曼积分(f(x)-gx)dx不妥。因此,把这一问题转换为求解两部分面积的之和的问题,注意这里面体现的数学思想。(第一部分面积)s1: ...

2018-01-02 11:03:57

阅读数 1406

评论数 0

黎曼积分解多条曲线围成的面积:MATLAB

黎曼积分解多条曲线围成的面积:MATLAB假设f(x)=-x^2+2与g(x)=-x两条曲线,两条曲线相交于两点,分别是(-1,1)和(2,-2),如图,红色曲线是f(x),绿色线是g(x):红色曲线和绿色曲线所围成的面积可由黎曼积分求解,显然,积分下限是-1,上限是2:MATLAB代码:syms...

2018-01-02 10:19:19

阅读数 1540

评论数 0

黎曼积分求解可微曲线的弧线长度

黎曼积分求解可微曲线的弧线长度假设曲线y=f(x)在区间[a,b]内光滑、可微且连续。那么可以根据微积分求解y=f(x)在a如图:从微分的思想入手建立数学函数式,假设s为曲线上(x,f(x))到(x+dx,f(x+dx))两点连线。这两点在水平方向的长度为dx,在垂直方向的y坐标轴长度为dy,根据...

2017-12-31 00:22:15

阅读数 2279

评论数 0

提示
确定要删除当前文章?
取消 删除