一个flink+kafka+hive示例

本文介绍了如何使用Flink 1.13.1版本与Hive 2.1.1进行集成操作。详细步骤包括配置环境、设置版本匹配,旨在提供一个实际操作的示例。
摘要由CSDN通过智能技术生成

版本:Flink 1.13.1 ,Hive 2.1.1

进入flink解压目录

bin/yarn-session.sh -nm testFlink2Hive -d -qu root.test -jm 1024 -tm 1024
bin/sql-client.sh embedded 

SET execution.checkpointing.interval = 12h;

CREATE CATALOG myhive WITH (
    'type' = 'hive',
    'default-database' = 'flink_test',
    'hive-conf-dir' = '/etc/hive/conf/'
);

use CATALOG myhive;

CREATE 
FlinkKafka是两种常用于大数据处理的技术,它们可以结合使用来处理实时数据流。以下是对FlinkKafka的介绍以及它们如何结合使用的说明: ### Flink Apache Flink一个开源的分布流处理框架,用于对无界和有界数据流进行有状态计算。Flink提供了高吞吐量和低延迟的流处理能力,并且支持复杂的流处理操作,如窗口计算、事件时间和状态管理等。 ### Kafka Apache Kafka一个分布流处理平台,用于构建实时数据管道和流应用。Kafka具有高吞吐量、可持久化和分布等特点,常用于消息传递、日志聚合、实时数据处理等场景。 ### FlinkKafka的结合 FlinkKafka可以结合使用,以构建强大的实时数据处理系统。以下是一些常见的应用场景: 1. **实时数据流处理**:Kafka作为数据源,实时收集和处理来自各种数据源的数据。Flink则负责对这些数据进行处理和分析。例如,实时监控、实时报表、实时推荐系统等。 2. **数据管道**:Kafka作为数据管道,连接不同的数据源和目标系统。Flink则作为数据处理引擎,对数据进行清洗、转换和聚合。例如,ETL(提取、转换、加载)流程。 3. **事件驱动应用**:Kafka作为事件总线,接收和分发各种事件。Flink则作为事件处理器,对事件进行实时处理和响应。例如,实时报警系统、实时决策系统等。 ### 示例 以下是一个简单的示例,展示了如何使用FlinkKafka中读取数据进行处理: ```java import org.apache.flink.api.common.serialization.SimpleStringSchema; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer; import java.util.Properties; public class FlinkKafkaExample { public static void main(String[] args) throws Exception { // 创建Flink执行环境 final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 配置Kafka消费者属性 Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "localhost:9092"); properties.setProperty("group.id", "flink-group"); // 创建Kafka消费者 FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("topic-name", new SimpleStringSchema(), properties); // 添加Kafka数据源 DataStream<String> stream = env.addSource(consumer); // 处理数据 stream.print(); // 执行任务 env.execute("Flink Kafka Example"); } } ``` 在这个示例中,FlinkKafka的主题中读取数据,并将其打印到控制台。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值