机器学习分为两个流派:
频率派 —— 统计机器学习
贝叶斯派 —— 概率图模型
最实质的区别还是 在预测结果的时候:频率方法认为真实结果由“推断”出的真实参数决定;而贝叶斯方法则认为,真实结果是所有可能参数所给出的预测结果的期望。
频率派:从「自然」角度出发,试图直接为「事件」本身建模,即事件A在独立重复试验中发生的频率趋于极限p,那么这个极限就是该事件的概率。
频率学派:其特征是把需要推断的参数θ视作固定且未知的常数,而样本X是随机的,其着眼点在样本空间,有关的概率计算都是针对X的分布。
贝叶斯派:频率学派下说的「随机事件」在贝叶斯学派看来,并不是「事件本身具有某种客观的随机性」,而是「观察者不知道事件的结果」而已,只是「观察者」知识状态中尚未包含这一事件的结果。
贝叶斯学派,他们把参数θ视作随机变量,而样本X是固定的,其着眼点在参数空间,重视参数θ的分布,固定的操作模式是通过参数的先验分布结合样本信息得到参数的后验分布。
频率学派(其实就是当年的Fisher)并不关心参数空间的所有细节,他们相信数据都是在这个空间里的”某个“参数值下产生

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



