双线性映射(密码学常用算法)

Java密码学原型算法实现——第三部分:双线性对


背景介绍

技术博客已经好久没更新了。倒不是因为没得写,是因为实在是太忙了,而且研究也到了一个瓶颈期,需要大量阅读文献。

本来打算很长一段时间都不更新博客了,甚至打算等我毕业工作后再更新一些有价值的博客,但是最近在CSDN私信上和知乎上经常收到求救帖子,希望我能写一个jPBC使用方法的博客。甚至实验室的硕士生们也在各种咨询我相关的问题。于是,我打算一劳永逸,写一篇有关jPBC使用的博客。希望这个博客出来后,能解决绝大多数人的问题吧…
本篇博客期望解决的问题:

如何使用jPBC库进行双线性群初始化,包括:
质数阶双线性群(Prime-Order Bilinear Groups); 合数阶双线性群(Composite-Order Bilinear Groups); 如何使用jPBC库执行双线性群运算,包括:
指数群 Z 的加法和乘法; 双线性群 G 的乘法和指数幂; 目标群 GT 的乘法和指数幂 双线性群 G 映射到目标群 GT 的对(Pairing)运算; 使用jPBC库的一些注意事项。

本篇博客不会涉及到的问题:

如何配置jPBC库到Eclipse中;这方面的内容请参考我的另一篇博客:jPBC 2.0.0配置与测试(补充版); 有关双线性对的数学知识;这方面我在第二章会稍微介绍一下,但是不会详谈,因为内容太多了。 对偶双线性群向量空间群(Dual Pairing Vector Space,DPVS);这个群在理论上被用于替代合数阶双线性群。其可以在保证同等安全性的条件下,使双线性对运算时间较短,而代价是存储开销会变大。这个工具在2012年得到了广泛的应用。但是这两年普遍认为这个工具的进一步应用场景有限,而且表示并不直观,还不如和合数阶双线性群好用。jPBC 2.0.0实际上提供了DPVS的实现,也是正确的。有兴趣的朋友们可以自己研究一下,我在这里就不详述了。 如何使用jPBC 2.0.0的多线性对(Multilinear Maps)函数库;这方面我自己一直没找时间测试一下多线性对函数库,实际上近期我也不太想测试这个库,主要有两方面的原因。
现在所构造出来的多线性对并非密码学中的理想多线性对(Ideal Multilinear Maps),而是候选多线性对(Candidate Multilinear Maps),后者在使用上有很多的限制。 jPBC 2.0.0实现的多线性对是[CLT-14]的方案,但这个方案已经被证明是不安全的了。

双线性群简介

这里我直接引用自己的二篇水文来介绍(都是凑数用的…)选择密文安全的身份及广播加密方案,密码学报,Experimental performance comparisons between (H) IBE schemes over composite-order and prime-order bilinear groups,IBCAST 2014。

质数阶双线性群(Prime-Order Bilinear Groups)

质数双线性群可以由五元组 (p,G1,G2,GT,e) 来描述。五元组中 p 是一个与给定安全常数 λ 相关的大质数, G1,G2,GT 均是阶为 p 的乘法循环群, e 为双线性映射 e:G1×G2→GT ,它满足以下3个条件:

双线性(Bilinearity):对于任意的 g∈G1 , h∈G2 , a,b∈Zp ,有 e(ga,hb)=e(g,h)ab ; 非退化性(Non-degeneracy):至少存在元素 g1∈G1,g2∈G2 ,满足 e(g1,g2)≠1 ; 可计算性(Efficiency):对于任意的 u∈G1,v∈G2 ,存在一个与给定安全常数 λ 相关的多项式时间算法,可以高效地计算 e(u,v) ;

现在的密码学相关论文中,习惯将 G1,G2 设置为乘法循环群。但是,基于椭圆曲线的双线性群构造中, G1,G2 是加法群。所以在大约2005年以前的论文中,双线性群一般写成加法群形式。jPBC中将 G1,G2 表示称为了乘法循环群,因此在实现写成加法群形式的方案时,要注意将加法群改成乘法群的写法再进行实现。如何修改呢?很简单,把加法群中的加法运算写成乘法运算、把加法群中的乘法运算写成幂指数运算即可。

合数阶双线性群(Composite-Order Bilinear Groups)

合数阶双线性群和质数阶双线性群很类似,区别是 G1,G2,GT 的阶数是一个合数 N ,其中 N 是一些大质数的乘积,如 N=p1p2?pn 。同样, e 为双线性映射 e:G1×G2→GT ,它满足双线性性、非退化性以及可计算性。

与质数阶双线性群不同,合数阶双线性群中, GN 有阶数分别为 p1,p2,?,pn 的子群 Gp1,?,Gpn 。这些子群进一步满足正交特性。
对于所有的hi∈Gpi和hj∈Gpj,如果i≠j,那么e(hi,hj)=1
简单地说就是,子群之间进行双线性运算的结果必为1。

一些说明

首先,由于双线性群现在的构造是基于椭圆曲线的,而椭圆曲线上的元素是由坐标 (x,y) 表示的,所以如果我们将 G1,G2 的结果输出到Java的控制台,我们得到的是一个坐标。不过, GT 是一个普通的 Z 群,所以其元素的表示是一个数。

其次,在密码学中,如果 G1=G2 ,我们称这个双线性群是对称双线性群(Symmetric Bilinear Group),否则称之为非对称双线性群(Asymmetric Bilinear Group)。

是否为对称双线性群由选取的椭圆曲线种类决定。一般认为,非对称双线性群要比对称双线性群更安全。特别地,现在已经证明一些特定的对称双线性群是不安全的了。

现在jPBC可以使用的曲线为如下几类:

Type A Type A1 Type D Type E Type F Type G

现在密码学实现基本只使用Type A和Type A1的。前者为对称质数阶双线性群,后者为合数阶对称双线性群。本博客也只在这两类曲线上实验。其他类曲线的实现类似。由于是对称双线性群,本博客中 G1,G2 统一写为 G 。

双线性群初始化

在jPBC中,双线性群的使用都是通过叫做Pairing的对象来实现的。双线性群的初始化在jPBC中就是对Pairing对象的初始化。双线性群有两种初始化的方法。第一种是通过代码动态产生一个双线性群,第二种是从文件中读取参数而产生群。

通过代码动态产生

动态产生的方法非常简单,大概有如下步骤:指定椭圆曲线的种类、产生椭圆曲线参数、初始化Pairing。Type A曲线需要两个参数:rBit是 Zp 中阶数 p 的比特长度;qBit是 G 中阶数的比特长度。代码为:

TypeACurveGenerator pg = new TypeACurveGenerator(rBit, qBit);
PairingParameters typeAParams = pg.generate();
Pairing pairing = PairingFactory.getPairing(typeAParams);

Type A1曲线需要二个参数:numPrime是阶数N中有几个质数因子;qBit是每个质数因子的比特长度。注意,Type A1涉及到的阶数很大,其参数产生的时间也比较长。代码为:

TypeA1CurveGenerator pg = new TypeA1CurveGenerator(numPrime, qBit);
PairingParameters typeA1Params = pg.generate();
Pairing pairing = PairingFactory.getPairing(typeA1Params);

通过文件读取产生

我们也可以选择事先产生好参数,存放在文件中。以后再初始化的时候,直接从文件中读取参数,就可以非常快速的初始化双线性群。

PairingParameters支持toString()函数。实际上,我们可以直接将PairingParametersd的toString()存放在文件中。读取的时候,通过读取文件就可以直接初始化双线性群了。

Type A曲线从文件中读取参数初始化的代码为:

TypeACurveGenerator pg = new TypeACurveGenerator(rBit, qBit);
PairingParameters typeAParams = pg.generate();
//将参数写入文件a.properties中,我用了Princeton大学封装的文件输出库
Out out = new Out("a.properties");
out.println(typeAParams);
//从文件a.properties中读取参数初始化双线性群
Pairing pairing = PairingFactory.getPairing("a.properties");

Type A1曲线从文件中读取参数初始化的代码为:

TypeA1CurveGenerator pg = new TypeA1CurveGenerator(numPrimes, qBit);
PairingParameters typeA1Params = pg.generate();
//将参数写入文件a1.properties中,同样使用了Princeton大学封装的文件输出库
Out out = new Out("a1.properties");
out.println(typeA1Params);
//从文件a1.properties中读取参数初始化双线性群
Pairing pairing = PairingFactory.getPairing("a1.properties");

产生双线性群中的随机数

Type A中产生随机数的方法很简单,代码为:

//随机产生一个Z_p群的元素
Element Z_p = pairing.getZr().newRandomElement().getImmutable();
//随机产生一个G_1群的元素
Element G_1 = pairing.getG1().newRandomElement().getImmutable();
//随机产生一个G_2群的元素
Element G_2 = pairing.getG2().newRandomElement().getImmutable();
//随机产生一个G_T群的元素
Element G_T = pairing.getGT().newRandomElement().getImmutable();

Type A1中产生随机数的方法稍微有点麻烦。对于 ZN 和 GT 方法和Type A一样。代码为:

//随机产生一个Z_N群的元素
Element Z_N = pairing.getZr().newRandomElement().getImmutable();
//随机产生一个G_T群的元素
Element G_T = pairing.getGT().newRandomElement().getImmutable();

但是对于 G 就不同了。因为 G 有子群 Gpi ,Type A1产生随机数时需要指定生成元,椭圆曲线的参数,产生哪个子群的元素,以及Type A1一共有多少个子群。

假定我们产生的Type A1共有n个子群,这n个子群的阶分别为 p1,?,pn ,产生随机数的代码如下:

TypeA1CurveGenerator pg = new TypeA1CurveGenerator(numPrimes, qBit);
PairingParameters typeA1Params = pg.generate();
Pairing pairing = PairingFactory.getPairing(typeA1Params);

//设定并存储一个生成元。由于椭圆曲线是加法群,所以G群中任意一个元素都可以作为生成元
Element generator = pairing.getG1().newRandomElement().getImmutable();
//随机产生一个G_p_1中的元素
Element G_p_1 = ElementUtils.getGenerator(pairing, generator, typeA1Params, 0, numPrimes).getImmutable();
//随机产生一个G_p_2中的元素
Element G_p_2 = ElementUtils.getGenerator(pairing, generator, typeA1Params, 1, numPrimes).getImmutable();
// ...... 
//随机产生一个G_p_n中的元素
Element G_p_n = ElementUtils.getGenerator(pairing, generator, typeA1Params, 1, numPrimes).getImmutable();

将指定的元素哈希到双线性群中

由于双线性群最初是用在基于身份的加密(Identity-Based Encryption)系统中,我们经常会需要将一个特定的String或者byte[]哈希到双线性群中。

jPBC支持将byte[]哈希到双线性群的 Z,G,GT 中。但是,jPBC说明文档中没有提到的是,byte[]数组长度不能太长,如果过长会抛出异常。因此,我建议首先将byte[]用一个SHA256或者其他通用哈希函数哈希到固定长度,再用jPBC提供的函数哈希到双线性群上。在这里我略去SHA256步骤,直接给出哈希到 Z,G,GT 群的代码:

//将byte[] byteArray_Z_p哈希到Z_p群
Element hash_Z_p = pairing.getZr().newElement().setFromHash(byteArray_Z_p, 0, byteArray_Z_p.length);
//将byte[] byteArray_G_1哈希到G_1群
Element hash_G_1 = pairing.getG1().newElement().setFromHash(byteArray_G_1, 0, byteArray_G_1.length);
//将byte[] byteArray_G_2哈希到G_2群
Element hash_G_2 = pairing.getG2().newElement().setFromHash(byteArray_G_2, 0, byteArray_G_2.length);
//将byte[] byteArray_G_T哈希到G_T群
Element hash_G_T = pairing.getGT().newElement().setFromHash(byteArray_G_T, 0, byteArray_G_T.length);

注意,对于Type A1来说,这个代码无法指定哈希到指定子群 Gpi 中。解决方法是将byte[]先哈希到 Z 群,然后利用 G,GT 的生成元计算幂指数,从而达到哈希到 G,GT 上的效果。

双线性群的运算

双线性群之间有如下运算:
- G 相关运算: GZ , G×G ;
- GT 相关运算: GZT , GT×GT ;
- Z 相关运算: Z+Z , Z×Z ;
- Pairing运算

做运算的时候要注意一下几点:

Java的运算结果都是产生一个新的Element来存储,所以我们需要把运算结果赋值给一个新的Element; Java在进行相关运算时,参与运算的Element值可能会改变。所以,如果需要在运算过程中保留参与运算的Element值,在存储的时候一定要调用getImmutable(),具体方法见代码中的初始化相关参数部分。 其实为了保险起见,防止Element在运算的过程中修改了Element原本的数值,可以使用Element.duplicate()方法。这个方法将返回一个与Element数值完全一样的Element,但是是个新的Element对象。举例来说,如果做 G1×G1 的运算,可以写成:
Element G_1_m_G_1 = G_1.duplicate().mul(G_1_p.duplicate());
G 和 G 其实也是可以进行幂指数运算的,即 GG ,调用的函数为Element e1.pow(Element e2)。特别注意,我们再写 G 群的 Z 次方运算时,用的函数为powZn(),而不是pow(),这个调用错误很容易使得程序的运算结果不正确。

代码如下:

//初始化相关参数
Element G_1 = pairing.getG1().newRandomElement().getImmutable();
Element G_2 = pairing.getG2().newRandomElement().getImmutable();
Element Z = pairing.getZr().newRandomElement().getImmutable();
Element G_T = pairing.getGT().newRandomElement().getImmutable();

Element G_1_p = pairing.getG1().newRandomElement().getImmutable();
Element G_2_p = pairing.getG2().newRandomElement().getImmutable();
Element Z_p = pairing.getZr().newRandomElement().getImmutable();
Element G_T_p = pairing.getGT().newRandomElement().getImmutable();

//G_1的相关运算
//G_1 multiply G_1
Element G_1_m_G_1 = G_1.mul(G_1_p);
//G_1 power Z
Element G_1_e_Z = G_1.powZn(Z);

//G_2的相关运算
//G_2 multiply G_2
Element G_2_m_G_2 = G_2.mul(G_2_p);
//G_2 power Z
Element G_2_e_Z = G_2.powZn(Z);

//G_T的相关运算
//G_T multiply G_T
Element G_T_m_G_T = G_T.mul(G_T_p);
//G_T power Z
Element G_T_e_Z = G_T.powZn(Z);

//Z的相关运算
//Z add Z
Element Z_a_Z = Z.add(Z_p);
//Z multiply Z
Element Z_m_Z = Z.mul(Z_p);

//Pairing运算
Element G_p_G = pairing.pairing(G_1, G_2);      
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页