张小彬的代码人生
码龄12年
关注
提问 私信
  • 博客:581,811
    581,811
    总访问量
  • 85
    原创
  • 1,390,054
    排名
  • 463
    粉丝
  • 1
    铁粉

个人简介:coder

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2012-10-29
博客简介:

张小彬的专栏

博客描述:
今朝有酒今朝醉,今朝无酒打酒去~
查看详细资料
个人成就
  • 获得273次点赞
  • 内容获得96次评论
  • 获得846次收藏
创作历程
  • 25篇
    2017年
  • 13篇
    2016年
  • 9篇
    2015年
  • 39篇
    2014年
成就勋章
TA的专栏
  • c/c++
    7篇
  • 算法
    17篇
  • java入门
    9篇
  • 数据结构
    3篇
  • 杂
    6篇
  • android
    2篇
  • Linux
    12篇
  • 机器学习
    22篇
  • 线性代数
    6篇
  • 研究生课程
    5篇
  • MLaPP
    12篇
  • cs231n
    5篇
  • NLP
    4篇
  • 论文
    1篇
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Text Summarization 综述

ABS 和 ABS+[Rush, 2015] A Neural Attention Model for Abstractive Sentence Summarization这篇 facebook 的论文是用神经网络来做生成式摘要的开山之作,后续的论文基本都会引用。而且在 github 上有开源的代码放出来,可以参考 facebook/NAMAS.模型的主要结构见下图(a),即左边的那部分,其实本质上
原创
发布博客 2017.11.24 ·
14992 阅读 ·
11 点赞 ·
4 评论 ·
33 收藏

Variational Autoencoder: Basic Concept

The neural network perspective传统的 Autoencoder 结构如下图: 但是这种结构没法生成新数据,只能做数据压缩。怎么改进呢?可以考虑加一个正则项,让隐变量趋近一个单位高斯分布。generation_loss = mean(square(generated_image - real_image)) latent_loss = KL-Divergence(la
原创
发布博客 2017.09.25 ·
1928 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

论文阅读:CopyNet

论文《Incorporating Copying Mechanism in Sequence-to-Sequence Learning》CopyNet 是在 Seq2Seq + Attention 的基础上,引入了拷贝机制,对某些任务会有所擅长。模型结构如下图 实现上有关键两点(即图中右边的上下两个矩形框),Prediction with Copying and Generati...
原创
发布博客 2017.08.03 ·
10635 阅读 ·
0 点赞 ·
5 评论 ·
12 收藏

word2vec 笔记

word2vec 是 Google 于 2013年开源的一个用于获取词向量的工具包,作者是 Tomas Mikolov,不过现在他已经从 Google Brain 跳槽到了 Facebook Research,后来还参与了 fasttext 项目的研究。下面是我读博客 word2vec 中的数学原理 的一些笔记和总结。Language Model (语言模型)统计语言模型(statistical l
原创
发布博客 2017.07.07 ·
4981 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

gensim 实践篇

继上篇文章了解了一些模型的基本原理以后,这里来讲讲怎么用 gensim,主要参考官方网站的 gensim: Tutorials,这篇博文也只是简单记下一点笔记。主要有三块内容,先讲怎么把文档表示成向量空间模型(VSM,vector space model)中的稀疏向量(sparse vector)形式,然后是怎么用模型(这里叫 topic and transformations)把词袋模型(BoW,
原创
发布博客 2017.06.16 ·
5313 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

gensim 理论篇

gensimgensim 是 Radim Rehurek 写的一个用来处理文本相似度的 python 库。可以很方便的用 tfidf,LDA,LSA,word2vec 等模型,涵盖了 NLP 里常见的词袋模型,主题模型,词嵌入等。下面简单介绍一下这些概念。Vector Space model在自然语言处理中,我们经常需要表示一个文档。一种常见的做法是写成向量的形式,比如直接统计一下该文章的词频,那么
原创
发布博客 2017.06.15 ·
2273 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

pytorch loss function 总结

最近看了下 PyTorch 的损失函数文档,整理了下自己的理解,重新格式化了公式如下,以便以后查阅。值得注意的是,很多的 loss 函数都有 size_average 和 reduce 两个布尔类型的参数,需要解释一下。因为一般损失函数都是直接计算 batch 的数据,因此返回的 loss 结果都是维度为 (batch_size, ) 的向量。如果 reduce = False,那么 s...
原创
发布博客 2017.05.18 ·
158804 阅读 ·
113 点赞 ·
15 评论 ·
414 收藏

cs231n 课程作业 Assignment 3

作业总结终于来到了最后一次作业,这次主要是讲 RNN 或 LSTM 这个时序模型,感觉如果公式已经熟悉了的话(没有的话多看几遍,也可以参考我上篇博文的公式总结,囧),作业应该比上次的简单。代码量也少一些。在写代码之前要下载一些必要的模型文件,数据集等,可能比上两次麻烦点,具体看 Assignment #3 的说明就好了。我的作业代码见:cs231n/assignment3.Image Caption
原创
发布博客 2017.04.27 ·
16066 阅读 ·
11 点赞 ·
5 评论 ·
41 收藏

RNN, LSTM, GRU 公式总结

RNN参考 RNN wiki 的描述,根据隐层 hth_t 接受的是上时刻的隐层(hidden layer) ht−1h_{t-1} 还是上时刻的输出(output layer)yt−1y_{t-1},分成了两种 RNN,定义如下:Elman network 接受上时刻的隐层 ht−1h_{t-1}Jordan network 接受上时刻的输出 yt−1y_{t-1}但是看了很多的教程,感觉应
原创
发布博客 2017.04.11 ·
41340 阅读 ·
16 点赞 ·
4 评论 ·
41 收藏

cs231n 课程作业 Assignment 2

上一次作业基本已经讲了构建一个多层神经网络的基本知识,包括其结构,公式推导,训练方法。这一次主要关注卷积神经网络(CNN, Convolution Neural Network),要先读完课程笔记 CS231n Convolutional Neural Networks for Visual Recognition,基本就懂了。特别是那个解释卷积的动态图,非常形象。CNN 主要多了卷积层(convo
原创
发布博客 2017.04.07 ·
27274 阅读 ·
10 点赞 ·
5 评论 ·
69 收藏

cs231n Convolutional Neural Network 笔记

CNNs: Architectures, Convolution / Pooling LayersCovNet LayersConvNet 显示地假设输入是图片,卷积池化等操作大大减少了参数,比一般的全连接网络计算更高效。CNN 里具体有下面的几种结构,卷积层, Convolutional LayerDilated convolutions 就是做点乘的时候,也有个stride,而不是连续的九宫格
原创
发布博客 2017.04.07 ·
2145 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

cs231n 课程作业 Assignment 1

课程资料趁着在学校的时间,跟着 cs231n 的课程做了一下作业,感觉收获特别大,现在汇总在博客里。下面是一些官方的课程资料: 网页 备注 课程主页 主页课程介绍 课程官方笔记 貌似要 fq 软件支持 Syllabus 课件、视频、课程安排表还有一些其他有用的非官方资料: 网页 备注 课程中文翻译 智能单元公众号提供的翻译 课程视频 网易云课堂提
原创
发布博客 2017.02.15 ·
71737 阅读 ·
59 点赞 ·
42 评论 ·
389 收藏

cs231n neural network 笔记

神经网络里的非线性是很重要且必不可少的。在全连接层之间引入非线性单元,可以让神经网络具有更强的表达能力。一个三层的神经网络可以大概写成这样子的形式,$$s = W_3\max(0, W_2\max(0,W_1x))$$ 中间的隐藏层神经元数量的大小可以自己设置。
原创
发布博客 2017.02.15 ·
4122 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

MLaPP Chapter 11 Mixture models and the EM algorithm

11.1 Latent variable models 隐变量模型图模型尝试在不同的观察变量之间建立条件独立关系,另一种思路则是用隐变量模型,即 LVMs, Latent variable models,这种模型假设观察变量都是从一个共同的“隐变量”中得到的。隐变量的意思就是无法观测到,没有数据,可以人为定义个数和表示的含义。因此聚类算法中的簇就可以看做是隐变量,而有监督学习中如果给了簇的标定数据,
原创
发布博客 2017.02.08 ·
1871 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

MLaPP Chapter 10 Bayes nets 贝叶斯网络

10.1 Introduction书里开头就引用了迈克尔·乔丹对图模型的理解,他说处理复杂系统有两个原则,模块性(modularity)个抽象性(abstraction),而概率论(probability theory)则通过因式分解(factorization)和求平均(averaging)深刻地实现了这两个原则。概率图模型有三大任务:表征(representatino),推断(Inference
原创
发布博客 2017.02.08 ·
2719 阅读 ·
2 点赞 ·
9 评论 ·
3 收藏

MLaPP Chapter 9 GLM and the exponential family 指数家族

9.1 Introduction前面讲过的很多概率分布其实都是属于指数家族簇,比如高斯,伯努利,泊松,狄利克雷分布等。当然,要除掉均匀分布和学生 t 分布。我们可以用指数家族分布来表示 class-conditional density,由此建立广义线性模型(GLM, Generalized Linear Model)这个生成分类器。9.2 The exponential family 指数家族指数
原创
发布博客 2017.02.08 ·
3128 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

MLaPP Chapter 8 Logistic Regression 逻辑斯特回归

8.1 IntroductionLR 是一个非常重要的模型,几乎所有的机器学习职位面试都会问到。因此这章是重点,一定要看懂。8.2 Model specification把线性回归的高斯分布,换成伯努利分布,就成了逻辑斯特回归,不过这个模型其实是个分类模型,p(y|x,w)=Ber(y|sigm(wTx))p(y|\mathbf{x}, \mathbf{w}) = \text{Ber}(y|\tex
原创
发布博客 2017.02.08 ·
2549 阅读 ·
1 点赞 ·
2 评论 ·
0 收藏

MLaPP Chapter 7 Linear Regression 线性回归

7.1 Introduction线性回归(Linear Regression)是统计学和机器学习中的主力军(work horse),当用核函数等做基函数扩充(basis function expansion)时,又可以模拟非线性关系。除了回归问题,如果用伯努利或者多努利分布代替高斯分布,那么就可以用来做分类问题(classification),下一章会讲。7.2 Model specificatio
原创
发布博客 2017.02.08 ·
2156 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

MLaPP Chapter 6 Frequentist statistics 频率学派统计学

6.1 Introduction频率学派统计学(frequentist statistics),经典统计学(classical statistics),或者叫正统的统计学(orthodox statistics),设计了一些不把参数当做随机变量的统计推断方法,从而避免了使用贝叶斯法则和先验。频率学派依赖于抽样分布(sampling distribution),而贝叶斯学派则依赖后验分布(poster
原创
发布博客 2017.02.08 ·
2714 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

MLaPP Chapter 5 Bayesian statistics 贝叶斯统计

5.1 Introduction 介绍在第三章我们讨论了如果用最大化后验(MAP)做参数估计,即 θ^=argmaxp(θ|D)\hat\theta = \arg\max_p(\theta | \mathcal{D}),和计算全后验 p(θ|D)p(\theta|\mathcal{D}) 和计算后验预测密度(posterior predictive density) p(x|D)p(\mathbf{
原创
发布博客 2017.02.08 ·
4345 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏
加载更多