亚马逊云科技提供众多免费云产品,可以访问:亚马逊云科技
生成式 AI 的快速发展将强大的公开可用的大型语言模型 (LLM) (如 DeepSeek-R1)带到了创新的前沿。DeepSeek-R1 模型现在可以通过 Amazon Bedrock Marketplace 和 Amazon SageMaker JumpStart 访问,而提炼的变体可以通过 Amazon Bedrock 自定义模型导入获得。根据 DeepSeek AI 的说法,这些模型在推理、编码和自然语言理解方面提供了强大的能力。但是,与所有模型一样,它们在生产环境中的部署需要仔细考虑数据隐私要求、适当管理输出中的偏差,以及需要强大的监控和控制机制。
采用 DeepSeek-R1 等开源、开放权重模型的组织有重要机会解决几个关键考虑因素:
- 在 OWASP LLM Top 10 和 MITRE Atlas 等资源的指导下,加强安全措施以防止潜在的滥用
- 确保保护敏感信息
- 培养负责任的内容生成实践
- 努力遵守相关行业法规
这些问题在医疗保健、金融和政府服务等受到高度监管的行业中尤为严重,在这些行业中,数据隐私和内容准确性至关重要。
这篇博文提供了使用 Amazon Bedrock 护栏为 DeepSeek-R1 和其他开放权重模型实施强大安全保护的全面指南。我们将探讨:
- 如何使用 Amazon Bedrock 提供的安全功能来保护您的数据和应用程序
- 实际实施防护机制,防止及时攻击并过滤有害内容
- 实施强大的深度防御策略
通过阅读本指南,您将学习如何使用 DeepSeek 模型的高级功能,同时保持强大的安全控制并促进合乎道德的 AI 实践。无论是开发面向客户的生成式 AI 应用程序还是内部工具,这些实施模式都将帮助您满足对安全和负责任的 AI 的要求。通过遵循这种循序渐进的方法,组织可以根据 AI 安全和安保的最佳实践部署 DeepSeek-R1 等开放权重 LLM。
Amazon Bedrock 上的 DeepSeek 模型和部署
DeepSeek AI 是一家专门从事开放重量基础 AI 模型的公司,最近推出了他们的 DeepSeek-R1 模型,根据他们的论文,该模型在行业基准测试中表现出了出色的推理能力和性能。根据第三方评估,这些模型在各种指标上始终排名前三,包括质量指数、科学推理和知识、定量推理和编码 (HumanEval)。
该公司进一步扩展了他们的产品组合,发布了六个源自 DeepSeek-R1 的密集模型,这些模型基于 Llama 和 Qwen 架构构建,他们制作了开放式模型。这些模型现在可以通过 亚马逊云科技 生成式 AI 解决方案访问:DeepSeek-R1 可通过 Amazon Bedrock Marketplace 和 SageMaker Jumpstart 获得,而基于 Llama 的蒸馏版本可以通过 Amazon Bedrock 自定义模型导入实现。
Amazon Bedrock 提供全面的安全功能,以帮助安全地托管和运行开源和开放权重模型,同时保持数据隐私和法规合规性。主要功能包括静态和传输中的数据加密、精细访问控制、安全连接选项和各种合规性认证。此外,Amazon Bedrock 还为内容筛选和敏感信息保护提供护栏,以支持负责任的 AI 使用。亚马逊云科技通过广泛的平台范围的安全性和合规性措施来增强这些功能:
- 使用 Amazon Key Management Service (Amazon KMS) 对静态和传输中的数据进行加密
- 通过 Amazon Identity and Access Management (IAM) 进行访问管理
- 通过 Amazon Virtual Private Cloud (Amazon VPC) 部署、VPC 终端节点和用于 TLS 检查和严格策略规则的 Amazon Network Firewall 实现网络安全
- 用于 Amazon 账户级监管的服务控制策略 (SCP)
- 用于访问限制的安全组和网络访问控制列表 (NACL)
- 合规性认证,包括 HIPAA、SOC、ISO 和 GDPR
- Amazon Bedrock 的 Amazon GovCloud(美国西部)中的 FedRAMP High 授权
- 通过 Amazon CloudWatch 和 Amazon CloudTrail 进行监控和日志记录
在部署到生产环境时,组织应根据其特定的合规性和安全需求自定义这些安全设置。作为其安全流程的一部分,亚马逊云科技 对所有模型容器进行漏洞扫描,并且只接受 Safetensors 格式的模型,以帮助防止不安全的代码执行。
Amazon 基岩护栏
Amazon Bedrock Guardrails 提供可配置的保护措施,以帮助安全地大规模构建生成式 AI 应用程序。Amazon Bedrock Guardrails 还可以与其他 Amazon Bedrock 工具(包括 Amazon Bedrock 代理和 Amazon Bedrock 知识库)集成,以构建更安全、更可靠的生成式 AI 应用程序,并符合负责任的 AI 策略。
核心功能
Amazon Bedrock 护栏可以通过两种方式使用。首先,它可以直接与 InvokeModel 和 Converse API 调用集成,在推理过程中,护栏将应用于输入提示和模型输出。此方法适用于通过 Amazon Bedrock Marketplace 和 Amazon Bedrock 自定义模型导入托管在 Amazon Bedrock 上的模型。或者,ApplyGuardrail API 提供了一种更灵活的方法,允许在不调用模型的情况下独立评估内容。第二种方法可用于评估应用程序各个阶段的输入或输出,以及使用 Amazon Bedrock 外部的自定义或第三方模型。这两种方法都使开发人员能够实施针对其使用案例定制的保护措施,并与负责任的 AI 策略保持一致,从而确保在生成式 AI 应用程序中进行安全合规的交互。
关键的 Amazon Bedrock 护栏策略
Amazon Bedrock Guardrails 提供以下可配置的护栏策略,以帮助安全地大规模构建生成式 AI 应用程序:
- 内容过滤器
可调节有害内容的过滤强度
预定义类别:仇恨、侮辱、色情内容、暴力、不当行为和及时攻击
包括文本和图像的多模式内容(预览版) - 主题筛选器
限制特定主题的功能
防止在查询和响应中出现未经授权的主题 - 单词过滤器
阻止特定单词、短语和亵渎
针对冒犯性语言或竞争对手引用的自定义过滤器 - 敏感信息筛选器
个人身份信息 (PII) 阻止或屏蔽
支持自定义正则表达式模式
标准格式(如 SSN、DOB 和地址)的概率检测 - 上下文接地检查
通过源接地检测幻觉
查询相关性验证 - 用于预防幻觉的自动推理检查(门控预览版)
其他功能
与模型无关的实现:
- 与所有 Amazon Bedrock 基础模型兼容
- 支持微调模型
- 通过 ApplyGuardrail API 扩展到外部自定义和第三方模型
这个全面的框架可帮助客户实施负责任的 AI,在各种生成式 AI 应用程序中维护内容安全和用户隐私。
解决方案概述
- 护栏配置
使用针对您的使用案例量身定制的特定策略创建护栏并配置策略。 - 与 InvokeModel API 集成
使用请求中的护栏标识符调用 Amazon Bedrock InvokeModel API。
当您进行 API 调用时,Amazon Bedrock 会将指定的护栏应用于输入和输出。 - 护栏评估流程
输入评估:在将提示发送到模型之前,护栏会根据配置的策略评估用户输入。
并行策略检查:为了改善延迟,将针对每个配置的策略并行评估输入。
输入干预:如果输入违反了任何护栏策略,则返回预配置的阻止消息,并丢弃模型推理。
模型推理:如果输入通过护栏检查,则会向指定模型发送提示进行推理。
输出评估:模型生成响应后,护栏会根据配置的策略评估输出。
输出干预:如果模型响应违反了任何护栏策略,则它将被预配置的消息阻止或屏蔽敏感信息,具体取决于策略。
响应交付:如果输出通过所有护栏检查,则响应将返回给应用程序,而不进行修改
先决条件
在为使用 Amazon Bedrock 自定义模型导入功能导入的模型设置护栏之前,请确保满足以下先决条件:
- 一个有权访问 Amazon Bedrock 的 亚马逊云科技 账户,以及具有所需权限的必要 IAM 角色。对于集中式访问管理,我们建议您使用 Amazon IAM Identity Center。
- 确保已使用 Amazon Bedrock 自定义模型导入服务导入自定义模型。为了便于说明,我们将使用 DeepSeek-R1-Distill-Llama-8B,它可以使用 Amazon Bedrock 自定义模型导入来导入。部署此模型有两个选项:
按照 部署 DeepSeek-R1 提炼的 Llama 模型中的说明部署 DeepSeek 的提炼 Llama 模型。
使用 Amazon-samples 中提供的笔记本进行部署。
您可以使用 亚马逊云科技 管理控制台创建护栏,如本博客文章中所述。或者,您可以按照此笔记本获取有关如何在此解决方案中创建护栏的编程示例。此笔记本执行以下作:
- 安装所需的依赖项
- 使用 boto3 API 和筛选条件创建护栏,以满足前面提到的使用案例。
- 为导入的模型配置 tokenizer。
- 使用显示各种 Amazon Bedrock 护栏筛选条件的提示测试 Amazon Bedrock 护栏。
这种方法将护栏集成到用户输入和模型输出中。这可确保在交互的两个阶段拦截任何可能有害或不适当的内容。对于使用 Amazon Bedrock 自定义模型导入、Amazon Bedrock Marketplace 和 Amazon SageMaker JumpStart 导入的开放权重蒸馏模型,需要实施的关键筛选条件包括用于提示攻击、内容审核、主题限制和敏感信息保护的筛选条件。
使用 亚马逊云科技 服务实施深度防御策略
虽然 Amazon Bedrock Guardrails 提供了基本内容和及时的安全控制,但在部署任何基础模型时,实施全面的深度防御策略至关重要,尤其是 DeepSeek-R1 等开放权重模型。有关与 LLM 的 OWASP Top 10 一致的深度防御方法的详细指导,请参阅我们之前关于构建安全生成式 AI 应用程序的博客文章。
主要亮点包括:
- 从安全开始,培养组织弹性
- 使用 亚马逊云科技 服务在安全的云基础上构建
- 跨多个信任边界应用分层防御策略
- 解决 LLM 应用程序的 OWASP 十大风险
- 在整个 AI/ML 生命周期中实施安全最佳实践
- 将 亚马逊云科技 安全服务与 AI 和机器学习 (AI/ML) 特定功能结合使用
- 考虑不同的观点并使安全性与业务目标保持一致
- 准备和缓解风险,例如及时注入和数据中毒
模型级控制措施(护栏)与深度防御策略相结合,可创建强大的安全态势,帮助防范:
- 数据泄露尝试
- 未经授权访问微调模型或训练数据
- 模型实现中的潜在漏洞
- 恶意使用 AI 代理和集成
我们建议在部署任何新的 AI/ML 解决方案之前,使用 亚马逊云科技 生成式 AI 工作负载指南进行全面的威胁建模练习。这有助于使安全控制与特定风险场景和业务要求保持一致。
亚马逊云科技提供众多免费云产品,可以访问:亚马逊云科技
结论
为 LLM(包括 DeepSeek-R1 模型)实施安全保护对于维护安全和合乎道德的 AI 环境至关重要。通过将 Amazon Bedrock Guardrails 与 Amazon Bedrock InvokeModel API 和 ApplyGuardrails API 结合使用,您可以帮助降低与高级语言模型相关的风险,同时仍能利用其强大的功能。但是,重要的是要认识到,模型级保护只是全面安全策略的一个组成部分。
本文中概述的策略解决了使用 Amazon Bedrock 自定义模型导入、Amazon Bedrock Marketplace 和 Amazon SageMaker JumpStart 在 Amazon Bedrock 上托管的各种开放权重模型中常见的几个关键安全问题。这些风险包括提示注入攻击的潜在漏洞、有害内容的生成以及最近评估中发现的其他风险。通过实施这些护栏以及深度防御方法,组织可以显著降低滥用风险,并更好地使其 AI 应用程序符合道德标准和监管要求。
随着 AI 技术的不断发展,优先考虑安全和负责任地使用生成式 AI 至关重要。Amazon Bedrock Guardrails 为实施这些保护措施提供了一个可配置的强大框架,允许开发人员根据其特定使用案例和组织策略自定义保护措施。我们强烈建议您使用 亚马逊云科技 指南对您的 AI 工作负载进行全面的威胁建模,以评估安全风险并在整个技术堆栈中实施适当的控制措施。
请记住,不仅要定期审查和更新您的护栏,还要定期审查和更新所有安全控制措施,以解决新的潜在漏洞,并帮助在快速发展的 AI 安全环境中保持对新出现的威胁的保护。虽然今天我们专注于 DeepSeek-R1 模型,但 AI 领域也在不断发展,新模型定期出现。
Amazon Bedrock Guardrails 与 亚马逊云科技 安全服务和最佳实践相结合,提供了一个一致的安全框架,可以适应在各种开放权重模型中保护您的生成式 AI 应用程序,无论是当前还是将来。通过将安全性视为一个持续的评估、改进和适应过程,组织可以自信地部署创新的 AI 解决方案,同时保持强大的安全控制。