POJ 3318 Matrix Multiplication【矩阵相乘——随机化检测】

POJ 3318 Matrix Multiplication【矩阵相乘——随机化检测】http://poj.org/problem?id=3318

Matrix Multiplication
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 16709   Accepted: 3646

Description

You are given three n × n matrices AB and C. Does the equation A × B = C hold true?

Input

The first line of input contains a positive integer n (n ≤ 500) followed by the the three matrices AB and respectively. Each matrix's description is a block of n × n integers.

It guarantees that the elements of A and B are less than 100 in absolute value and elements of C are less than 10,000,000 in absolute value.

Output

Output "YES" if the equation holds true, otherwise "NO".

Sample Input

2
1 0
2 3
5 1
0 8
5 1
10 26

Sample Output

YES

Hint

Multiple inputs will be tested. So O(n3) algorithm will get TLE.

Source

[Submit]   [Go Back]   [Status]   [Discuss]

【题意】n*n的矩阵A,B,C;判断是否A*B=C成立。

【分析】随机化检测可优化到o(n^2)。

【方法一代码】

//Accepted	4860K	1782MS	C++	991B
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>

using namespace std;

int a[600][600], b[600][600], c[600][600], d[600][600];
int n;

int main()
{
    while(~scanf("%d", &n))
    {
        for(int i=0; i<n; i++)  for(int j=0; j<n; j++)
            scanf("%d", &a[i][j]);
        for(int i=0; i<n; i++)  for(int j=0; j<n; j++)
            scanf("%d", &b[i][j]);
        for(int i=0; i<n; i++)  for(int j=0; j<n; j++)
            scanf("%d", &c[i][j]);
        for(int i=0; i<n; i++)
            for(int j=0; j<n; j++)
                if(a[i][j]){
                    for(int r=0; r<n; r++)
                        d[i][r] += a[i][j] * b[j][r];
                }
        int flag = 0;
        for(int i=0; i<n; i++){
            for(int j=0; j<n; j++)
                if(c[i][j] != d[i][j]){ flag = 1;  break; }
            if(flag) break;
        }
        if(flag) puts("NO");
        else puts("YES");
    }
    return 0;
}

【方法二 随机化检测】

//Accepted	6168K	1063MS	C++	1809B
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<iomanip>
#include<limits.h>
#include<stdlib.h>
#include<fstream>
#include<sstream>
//BASIC
#include<ctype.h>
#include<time.h>
#include<assert.h>
#include<bitset>
#include<cassert>
#include<complex>
//OTHER
#include<algorithm>
#include<deque>
#include<functional>
#include<iterator>
#include<vector>
#include<list>
#include<map>
#include<memory>
#include<numeric>
#include<queue>
#include<set>
#include<stack>
#include<utility>
//STL
using namespace std;
int a[1020][1020],b[1020][1020],c[1020][1020],y[1020],temp1[1020],temp2[1020];
int n;
bool judge(int x[])
{
    for(int i = 1;i <= n;i++)
        for(int j = 1;j <= n;j++)
            temp1[i] += b[i][j]*x[j];
    for(int i = 1;i <= n;i++)
        for(int j = 1;j <= n;j++)
            temp2[i] += a[i][j]*temp1[j];//a*b
    for(int i = 1;i <= n;i++)//clear
        temp1[i] = 0;
    for(int i = 1;i <= n;i++)
        for(int j = 1;j <= n;j++)
            temp1[i] += c[i][j]*x[j];
    for(int i = 1;i <= n;i++)
    {
        if(temp1[i]!=temp2[i])
            return false;
    }
    return true;
}
int main()
{
    while(scanf("%d",&n)==1)
    {
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                scanf("%d",&a[i][j]);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                scanf("%d",&b[i][j]);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                scanf("%d",&c[i][j]);

        srand(0);
        for(int i = 1;i <= 100;i++)
            for(int j = 1;j <= n;j++)
                y[j] = rand()%19;
        if(judge(y))
            printf("YES\n");
        else
            printf("NO\n");
    }
    return 0;
}


阅读更多
换一批

Matrix Chain Multiplication

10-24

escriptionnSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. nSince matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose. nFor example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. nThere are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C). nThe first one takes 15000 elementary multiplications, but the second one only 3500. nnYour job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy. nInputnInput consists of two parts: a list of matrices and a list of expressions. nThe first line of the input file contains one integer n (1 <= n <= 26), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix. nThe second part of the input file strictly adheres to the following syntax (given in EBNF): nSecondPart = Line Line nnLine = Expression nnExpression = Matrix | "(" Expression Expression ")"nnMatrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"nOutputnFor each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.nSample Inputn9nA 50 10nB 10 20nC 20 5nD 30 35nE 35 15nF 15 5nG 5 10nH 10 20nI 20 25nAnBnCn(AA)n(AB)n(AC)n(A(BC))n((AB)C)n(((((DE)F)G)H)I)n(D(E(F(G(HI)))))n((D(EF))((GH)I))nSample Outputn0n0n0nerrorn10000nerrorn3500n15000n40500n47500n15125

没有更多推荐了,返回首页