多目标跟踪

http://blog.csdn.net/cyxyz/article/details/41821737

一、Guide

进行多目标跟踪的学习。
跟踪的难点

  • 将现在检测到的目标和以前检测的目标进行匹配连接
  • 跟踪被遮挡的目标
  • 当被遮挡的目标再次出现时,可以重新分配

二、Resources

1. 这是别人整理的一些跟踪方面的资料,方便以后学习使用。

2. CVPR 2014上关于tracking的文章还是比较多的。

3. UIUC的Jia-Bin Huang同学收集的关于tracking的代码。

  • Particle filter object tracking [1] Project
  • KLT Tracker [2-3] Project
  • MILTrack [4] Code, 这个代码需要Intel ipp, 没有跑通。
  • Incremental Learning for Robust Visual Tracking [5] Project
  • Online Boosting Trackers [6-7] Project
  • L1 Tracking [8] Matlab code

代码相关论文

  1. P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based Probabilistic Tracking ECCV, 2002. [PDF]
  2. B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, IJCAI 1981. [PDF]
  3. J. Shi, C. Tomasi, Good Feature to Track, CVPR 1994. [PDF]
  4. B. Babenko, M. H. Yang, S. Belongie, Robust Object Tracking with Online Multiple Instance Learning, PAMI 2011 [PDF]
  5. D. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual Tracking, IJCV 2007 [PDF]
  6. H. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR 2006 [PDF]
  7. H. Grabner, C. Leistner, and H. Bischof, Semi-supervised On-line Boosting for Robust Tracking, ECCV 2008 [PDF]
  8. X. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009. [PDF]

三、Papers

1. UCF的GMCP-Tracker方法

可以进行多个行人跟踪,相关论文是Global Multi-object Tracking Using Generalized Minimum Clique Graphs。演示效果如下,但貌似不是实时的,论文中说在Matlab中实现,一帧要4s左右,不过可以进行优化。

result

2. CVPR上Horst Possegger的两篇文章

CVPR2014:Occlusion Geodesics for Online Multi-Object Tracking
    这篇文章的Matlab代码可以直接运行,且效果也不错。文中只使用了几何学的信息,计算遮挡区域的置信度,利用munkres versionHungarian Algorithm实现检测目标的分配。文章对比了online,offline,和multi-camera几种方法,显示出文章方法在准确率和速度上都有明显的优势。察看代码,发现作者只提供一个demo的主m文件和一个配置文件,细节的实现都是.p文件,无法阅读具体的代码。不过,从它的主文件中已经可以看到程序的具体实现。这个demo没有使用检测器检测目标,而是利用标注文件把每帧的目标都标记出来。

CVPR2013:Robust Real-Time Tracking of Multiple Objects by Volumetric Mass Densities

3.《Stable Multi-Target Tracking in Real-Time Surveillance Video》 CVPR2013 @Ben BenFold

文章中说一般的跟踪方法只提供了大概的位置,但他们的方法可以提供了准确的头部位置估计。方法是多线程的,异步的HOG检测,同时进行KLT(光流)跟踪,使用Markov-Chain Monte-Carlodata association。

4. 《Tracking Using Motion Patterns for Very Crowded Scenes》 ECCV2012 @Xuemei Zhao

  1. It combines visual tracking, motion pattern learning and multi-target tracking.
  2. Structured crowded scenes exhibit clear motion pattern(s)
  3. Tow issues need to be solved.
    • motion pattern problem
    • single vs multi-target tracking
  4. detections:
    • normal methods don't work
      • appearance based on detector
      • background modeling
    • proposed method
      手动标注一个目标,训练一个检测器,并用这个检测器检测其它相同的目标。并将学习到的一个目标运动形式扩展到多个目标。

5. 《Online Multi-Person Tracking by Tracker Hierarchy》 AVSS 2012 @Jianming Zhang

  Zhang提出了一个自己的通过检测进行跟踪(tracking-by-detection)的框架,apperance model通过template ensemble更新,使用分级的跟踪器。
  
Contributions:

  • 模板集(template ensemble)可以在线更新,丢弃不好的模板。
  • 一个分层的跟踪器,选取最有效的跟踪策略。专家跟踪器,有许多置信度高的模板。正常的跟踪器包含更少的模板,依赖新检测的结果更多,对模板依赖少。在跟踪过程中,可以对跟踪器升级和降级。
  • 可以自动初始和结束跟踪器。

    知识点:
    生成模型(generative model): 生成一个模板,进行匹配,联合概率p(x, y)
    判别模型(discriminative model):对之进行判别, 条件概率p(y | x)

当目标被遮挡后,自动增长搜索区域范围。

6. 《Online Motion Agreement Tracking》 BMVC 2013 @Zheng Wu

Wu

7. 《Robust tracking via patch-based appearance model and local background estimation》 2014 neurocomputing @Bineng Zhong

Zhong

 

四、Problems

1. data association

检测出目标之后,使用什么进行数据的关联是一个主要问题。motionapperance、...

五、Reference

  1. http://www.yale.edu/perception/Brian/refGuides/MOT.html
  2. CVPR 2014
阅读更多
文章标签: 多目标跟踪
想对作者说点什么? 我来说一句

多目标跟踪vs+opencv

2016年11月06日 32.95MB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭