LeetCode 198.打家劫舍-简单

1.题目

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/house-robber
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

示例1

输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。

示例2

输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/two-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2.解题

方法一:动态规划

  • 问题本质是求间隔一位的数字和的最大值
  • 运用动态规划的解题思路:
    设计动态规划的三个步骤:
    1.将问题分解成最优子问题
    2.用递归的方式将问题表述成最优子问题的解
    3.自底向上的将递归转换成迭代(函数递归是自顶向下)
  • 由题:前i+1个房屋的最大收益必然是前i-1个房子的收益+第i+1个房子的收益总和前i个房子的收益中较大的那个,即有表达式:dp[i+1]=max(dp[i1]+nums[i+1],dp[i])dp[i+1]=max(dp[i-1]+nums[i+1],dp[i])
  • 于是可以递推可以得到任意i个房屋的最大收益
  • 边界条件:输入list为空,则需返回0
  • 复杂度分析:
    时间复杂度 O(N): 只做了一次遍历
    空间复杂度 O(N): 申请了dp数组所需空间
class Solution:
    def rob(self, nums: List[int]) -> int:
        """
        :type nums: List[int]
        :rtype: int
        """
        n = len(nums)
        if n == 0:
            return 0
        dp = [0 for i in range(n+1)]
        dp[1] = nums[0]
        for i in range(1,n):
            dp[i+1] = (max(dp[i-1]+nums[i], dp[i]))
        return max(dp)

在这里插入图片描述

方法二:不申请空间,直接在nums上改值

  • 复杂度分析:
    时间复杂度 O(N): 只做了一次遍历
    空间复杂度 O(1)
class Solution:
    def rob(self, nums: List[int]) -> int:
        """
        :type nums: List[int]
        :rtype: int
        """
        n = len(nums)
        if n == 0:
            return 0
        if n == 1:
            return nums[0]
        else: # 递推的基础必须准确初始化,nums[0]不需要改动,nums[1]需要改动,
            nums[1] = max(nums[0], nums[1])
        for i in range(2, n):  
            nums[i] = max(nums[i-2]+ nums[i],nums[i-1])
        return nums[n-1]

在这里插入图片描述

发布了15 篇原创文章 · 获赞 1 · 访问量 1770
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览