Turnkey Linux 发布 15.0 版

Turnkey GNU/Linux 是一个免费的基于 Debian 的虚拟设备库,其将各种自由软件组件预先集成并打磨成安全、易用的解决方案。虚拟设备是预先集成的自包含系统,其通过将软件应用程序(例如服务器软件)与操作系统组合而制成,以使其在标准硬件或虚拟机(例如 VMWare、VirtualBox 及 Xen)中运行。

该项目于日前发布了 TurnKey GNU/Linux 15.0 稳定版。此第一阶段的版本包括近一半的库(47 个设备),目前仅 ISO 格式。 其团队正在忙着准备更新的 Hub 版本,以及 Amazon MarketPlace 版本。 所有其他构建类型(即 VM/OVA、OpenStack、Proxmox/LXC、Xen 和 Docker)将很快跟进。

相关的 15.0 ISO 均可通过各自设备页面上的「v15.0」链接下载。 此阶段更新的设备包括 Core LAMP、WordPress、Joomla3、Drupal 7 及 Drupal 8 等。 值得特别注意的更改包括新的 Debian 基本操作系统,其包含 PHP7,MySQL 由 MariaDB 替换,新的 Webmin 主题,可复现的包和网站升级(正在进行中),以及许多其他调整,改进和升级。

更多信息载于其发布通告

TurnKey 的灵感来自于对自由软件民主化力量的信念(如科学研究那样),以促进自由和人道社会的进步。

如果没有自由分发、修补和学习免费软件的自由,我们所知道的互联网将不存在。自由软件是这个时代最伟大的技术奇迹背后隐藏的,往往是无形的力量。

例如,Debian GNU/Linux 发行版在其软件仓库中有超过 37500 个软件包。自由软件运动共同创造了一个软件宝库,任何人都可以自由使用、分发、修改和学习。

不幸的是,大部分宝藏都像是被加锁了,因为很少有人知道它,甚至更少有能力充分利用它。

发现、配置和测试组件组合可能是众所周知的挑战,其耗时且低效。这一情况在每​​个人都通过构建自己的解决方案来重新发明轮子时尤为明显。

为了最大限度地利用现有的资源,Turnkey 项目创建了一个简单而强大的 Linux 发行版开发工具包,可以轻松创建预组装的解决方案,可以在运行 CD 映像的几分钟内部署在裸机上,在虚拟设备上运行的虚拟设备,或从浏览器控制的云实例。

具体来说,采用 Turnkey Linux 有如下优势:

  • 100 多个即用型解决方案。这包含但不限于: LAMP, WordPress, Joomla, Drupal, Redmine, MySQL, MediaWiki, Domain controller, File server, Ruby on Rails, phpBB。
  • 自由:具有完整源代码和强大构建系统的免费软件。没有隐藏的后门,没有限制性许可,可以免费学习,修改和分发。
  • 安全且易于维护:每天使用最新的安全补丁自动更新。
  • 单击备份和还原:智能备份软件将对文件,数据库和包管理的更改保存到加密存储,可以自动从中恢复哪些服务器。
### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值