Python编程作业【第六周】(二)

4人阅读 评论(0) 收藏 举报
分类:

11-1 cities and countries

def get_city(city, country):
    city_country = city + ", " + country
    return city_country.title()
import unittest
from func import get_city

class NameTestCase(unittest.TestCase):

    def test_the_string(self):
        format_name = get_city("Beijing", "China")
        self.assertEqual(format_name, "Beijing, China")

unittest.main()

11-2 population

def get_city(city, country, population):
    city_country = city + ", " + country + " - " + population
    return city_country.title()
def get_city(city, country, population = '10000000'):
    city_country = city + ", " + country + " - " + population
    return city_country.title()
import unittest
from func import get_city

class NameTestCase(unittest.TestCase):

    def test_the_string(self):
        format_name = get_city("Beijing", "China")
        self.assertEqual(format_name, "Beijing, China - 10000000")

unittest.main()

11-3 employee

class Employee():
    def __init__(self, first_name, last_name, salary):
        self.first_name = first_name
        self.last_name = last_name
        self.salary = salary
    def give_raise(self, add = 5000):
        self.salary += add
        return self.salary
import unittest
from func import Employee

class TestMyCase(unittest.TestCase):
    def setUp(self):
        self.emp = Employee("Binqi", "Zhao", 100)
    def test_give_default_raise(self):
        format_ans = self.emp.salary
        self.assertEqual(format_ans, 100)
    def test_give_add_raise(self):
        format_ans = self.emp.give_raise(2333)
        self.assertEqual(format_ans, 2433)

unittest.main()
查看评论

Coursera—machine learning(Andrew Ng)第六周编程作业

linearRegCostFunction.m function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGC...
  • ccblogger
  • ccblogger
  • 2017-11-24 15:33:57
  • 585

machine-learning第六周 上机作业

1、如何评估算法好坏:高偏差与高方差的问题; 2、当某个集合中,一个类别远小于另一个类别的时候(如患癌),如何评估在面对偏斜类(Skewed classes)的算法好坏:查准率和召回率; 3、如何选择...
  • dialoal
  • dialoal
  • 2016-02-02 16:21:28
  • 1507

coursera机器学习课程第六周——课程笔记

本周的内容主要分为两部分,第一部分:主要内容是偏差、方差以及学习曲线相关的诊断方法,为改善机器学习算法的决策提供依据;第二部分:主要内容是机器学习算法的错误分析以及数值评估标准:准确率(交叉验证集的误...
  • ccblogger
  • ccblogger
  • 2017-11-27 17:47:21
  • 305

Coursera Machine Learning 第六周编程week6 ex5Regularized Linear Regression and Bias/Variance编程全套满分题目+注释选做

资源链接:http://download.csdn.net/download/sinat_39805237/10157407 lambda=0时 lambda=...
  • sinat_39805237
  • sinat_39805237
  • 2017-12-13 20:06:25
  • 139

2008061023_CC_第六周作业

  • 2011年04月04日 09:53
  • 168KB
  • 下载

Coursera吴恩达ML 第六周编程week6 Regularized Linear Regression and BiasVariance编程注释选做

  • 2017年12月13日 20:01
  • 224KB
  • 下载

coursera吴恩达机器学习第一到第六周octave编程作业

  • 2018年02月21日 15:26
  • 31.33MB
  • 下载

coursera斯坦福machine learning第六周作业ex5

  • 2015年10月24日 13:05
  • 372KB
  • 下载

Coursera机器学习-第六周-Advice for Applying Machine Learning

Evaluating a Learning Algorithm Desciding What to Try Next Evaluating a Hypothesis Model...
  • dingchenxixi
  • dingchenxixi
  • 2016-06-01 07:58:34
  • 2172

Coursera吴恩达机器学习课程 总结笔记及作业代码——第6周有关机器学习的小建议

1.1 Deciding what to try next当你调试你的学习算法时,当面对测试集你的算法效果不佳时,你会怎么做呢? 获得更多的训练样本? 尝试更少的特征? 尝试获取附加的特征? 尝试增加...
  • qq_27008079
  • qq_27008079
  • 2017-05-21 15:58:40
  • 5794
    个人资料
    持之以恒
    等级:
    访问量: 160
    积分: 112
    排名: 120万+
    文章分类
    文章存档