【Andrew Ng 机器学习】Week 1(一):基本概念和线代基础

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhaodedong/article/details/80331122

0x00 前言

第一周主要讲了四部分内容:

  1. 机器学习简介
  2. 单变量线性回归的模型和代价函数
  3. 单变量线性回归的的梯度下降
  4. 线代基础

由于篇幅会比较长,后续的笔记都会按照一些主题将每周的内容分拆成几篇笔记。本篇只有机器学习简介和线性代数两部分。

0x01 机器学习简介

一、什么是机器学习

The field of study that gives computers the ability to learn without being explicitly programmed.

第一个机器学习的定义来自于Arthur Samuel。他定义机器学习为,在进行特定编程的情况下,给予计算机学习能力的领域。

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

另一个年代近一点的定义,由Tom Mitchell提出,来自卡内基梅隆大学,Tom定义的机器学习是,一个好的学习问题定义如下,他说,一个程序被认为能从经验E中学习,解决任务T,达到性能度量值P,当且仅当,有了经验E后,经过P评判,程序在处理T时的性能有所提升。

二、监督学习

监督式学习中,我们得到了一个数据集,并且已经知道我们的正确输出应该是什么样子,并且认为输入和输出之间存在关系。

监督学习问题分为“回归”和“分类”。

在回归问题中,我们试图预测连续输出中的结果,这意味着我们试图将输入变量映射到某个连续函数。

在分类问题中,我们试图预测离散输出中的结果。换句话说,我们试图将输入变量映射到离散类别。

三、无监督学习

在无监督学习中,我们能够很少或根本不知道我们的结果应该是什么样子。

聚类就是无监督学习。比如说新闻聚类。

0x02 线代基础

基础内容不详细记录,只记几个小点。

一、基本概念

  • Scalar:标量,就是一个数值
  • Verctor:n x 1的矩阵
  • Matrix:矩阵
  • Identity Matrix:单位矩阵,对角线上都为1

二、运算

矩阵相乘:

矩阵转置:


作者:木东居士 |简书 | CSDN | GITHUB

个人主页:http://www.mdjs.info
也可以关注我:木东居士。

文章可以转载, 但必须以超链接形式标明文章原始出处和作者信息

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页