
Not All Features Matter:Enhancing Few-shot CLIP with Adaptive Prior Refinement
对于多模态任务而言,大量数据的获得是耗费人力和物力的,因此few-shot的训练方式一直备受关注。目前已经证实了CLIP模型的超强性能,很多研究人员提出了基于CLIP的检测算法,然而多数都是在研究如何更好地利用CLIP提取出的features,本文则从“Not All Features Matter”的角度进行了新的探索,提出了一个Adaptive Prior rEfinement方法,用于处理特征中的冗余信息,除此之外还提出了无需训练的APE和需要训练的APE-T方法。












