最速下降法和牛顿法都有其自身的局限性,而共轭梯度法是介于最速下降法与牛顿法之间的一种无约束优化算法,它具有超线性收敛速度,而且算法简单。此外,与最速下降法类似,共轭梯度法只用到了目标函数及其梯度值,避免了二阶导数(Hess矩阵)的计算,从而降低了计算量和存储量。详细的算法介绍见于我的百度文库。()
%基于Armijo非精确线搜索的再开始FR共轭梯度法的Matlab程序
function [x,val,k]=frcg(fun,gfun,x0)
%功能:用FR共轭梯度法求解无约束问题
%输入:fun、gfun分别是目标函数和其梯度,x0是初始点
%输出:x、val分别是最优点和最优值,k是迭代次数
maxk=5000;%最大迭代次数
rho=0.6;
sigma=0.4;
epsilon=1e-4;
k=0;
n=length(x0);
while k<maxk
g=feval(gfun,x0);%计算梯度
%%%%%%%%%再开始的实现%%%%%%%
itern=k-(n+1)*floor(k/(n+1));%floor()向负无穷方向舍入,如floor(2.7)=2
itern=itern+1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%计算搜索方向
if itern==1
d=-g;
else
beta=(g'*g)/(g0'*g0);
d=-g+beta*d0;
%当搜索方向不是下降方向时,插入负梯度方向作为搜索方向
gd=g'*d;
if gd>0.0
d=-g;
end
end
%检验终止条件
if norm(g)<epsilon
break;
end
%Armijo搜索步长
m=0;mk=0;
while m<20
if feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d
mk=m;break;
end
m=m+1;
end
x0=x0+rho^mk*d;
%val=feval(fun,x0);
g0=g;
d0=d;
k=k+1;
end
x=x0;
val=feval(fun,x);
function f=fun(x)
f=100*(x(1)^2-x(2))^2+(x(1)-1)^2;
function g=gfun(x)
g=[400*x(1)*(x(1)^2-x(2))+2*(x(1)-1),-200*(x(1)^2-x(2))]';