自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(705)
  • 资源 (5)
  • 收藏
  • 关注

原创 AI学习指南自然语言处理篇-Transformer模型的实践

自注意力机制(Self-Attention)是Transformer模型的核心。在处理序列数据时,这种机制允许模型关注序列中的不同部分,从而捕捉到长距离的依赖关系。生成Query、Key、Value计算注意力权重输出最终输出与输入长度相同,捕捉到全局的上下文信息。本文深入探讨了Transformer模型的实现及在NLP任务中的应用,包括文本分类与机器翻译。借助于PyTorch,我们能够轻松地构建和训练Transformer模型。

2024-10-28 06:30:00 1691

原创 AI学习指南自然语言处理篇-Transformer模型的训练

Transformer模型由Vaswani等人在2017年提出,采用自注意力机制来处理序列数据。与传统RNN(递归神经网络)相比,Transformer能够更好地捕捉长距离依赖关系,且训练速度更快。Transformer模型的训练过程包括数据准备、损失函数设计、学习率调度、参数初始化等步骤。以下将详细介绍这些过程。在本文中,我们深入探讨了Transformer模型的训练过程,包括损失函数设计、学习率调度、参数初始化等关键步骤。此外,还讨论了基于注意力的机制、残差连接和层归一化等训练策略。

2024-10-27 06:30:00 1577

原创 AI学习指南自然语言处理篇-Transformer模型的应用

编码器(Encoder)和解码器(Decoder)。编码器负责处理输入序列,而解码器则生成输出序列。模型使用自注意力机制来计算各个词之间的关系,从而有效捕捉文本的上下文。机器翻译是自然语言处理中的重要任务,旨在将一种语言翻译成另一种语言。其目标是实现高质量的翻译,使得翻译后的文本在目标语言中自然流畅。文本生成是指根据输入内容自动生成相关文本的过程。它被广泛应用于内容创作、对话生成等领域。语言建模是自然语言处理的基础任务,目标是预测下一个词或句子。这在自动补全、智能助手等应用中至关重要。

2024-10-27 06:30:00 934

原创 AI学习指南自然语言处理篇-Transformer模型的编码器-解码器结构

Transformer模型于2017年由Vaswani等人提出,主要用于处理序列到序列的任务。与之前的循环神经网络(RNN)不同,Transformer不再依赖序列的顺序进行处理,而是采用了注意力机制,允许模型在输入序列的不同位置之间建立直接的联系。Transformer模型通过其编码器-解码器结构与多头注意力机制,极大地提高了序列到序列的表现力,其灵活性与性能让其在自然语言处理领域取得了显著成就。未来的研究方向可能包括对其进行进一步的结构改进、优化注意力机制的效率,并探讨其在多模态学习中的应用。

2024-10-26 06:30:00 1449

原创 AI学习指南自然语言处理篇-位置编码(Positional Encoding)

位置编码是现代自然语言处理中的一个基本构件,它为模型提供了必要的位置信息。通过不同的编码方法,包括绝对位置编码和相对位置编码,模型能够有效地理解输入数据的结构和含义。Transformer模型的成功证明了有效地捕捉序列关系的重要性,为未来的研发和应用提供了强大的支持。在许多自然语言处理任务中,位置编码的意义不仅在于让模型“知道”元素的位置,更在于通过上下文提升了模型的智能与能力。

2024-10-26 06:30:00 992

原创 AI学习指南自然语言处理篇-Transformer模型简介

在这篇博客中,我们深入探讨了Transformer模型的背景、结构及其在自然语言处理中的应用。Transformer的核心思想是自注意力机制,允许模型在序列中的任意位置直接进行交互,从而克服了传统RNN的局限性。本篇博客将深入探讨Transformer模型的背景、结构及其在自然语言处理中的应用,特别是它相对于传统的循环神经网络(RNN)和卷积神经网络(CNN)的优势。”的情况下,Transformer能够生成的文本可能是“今天的天气晴朗,气温在25°C左右,非常适合户外活动。最后,我们创建并编译了模型。

2024-10-25 06:30:00 1247

原创 AI学习指南深度学习篇-自注意力机制(Self-Attention Mechanism)

自注意力机制是一种使得模型能够在处理输入序列时,有效地关注到序列中各个元素之间的关系。与传统的卷积和循环神经网络(RNN)不同,自注意力机制能够在单一的计算步骤中捕捉到序列中不同位置之间的相互关系。

2024-10-25 06:30:00 1797

原创 AI学习指南深度学习篇-对比学习的变种

对比学习是一种通过比较样本之间的相似性与差异性进行学习的策略。最常见的形式是通过构造正样本对(相似样本)和负样本对(不相似样本),并用损失函数(如对比损失或者信息熵损失)来优化模型。对比学习作为深度学习中的一项重要技术,随着其变种的不断发展,已经成为多种任务中的关键组成部分。从自监督对比学习到元学习中的应用,各种方法极大增强了模型在复杂任务中的表现。未来,随着更多创新方法的提出,对比学习有望在各个领域表现出更强的适应性和效果。

2024-10-24 06:30:00 779

原创 AI学习指南深度学习篇-对比学习的python实践

对比学习是一种自监督学习的方法,在这种方法中,模型通过比对相似和不相似的样本进行训练。对比学习的核心思想是:“识别相似的样本,区分不相似的样本”。它可以有效地用于特征学习,提高模型在无标签数据上的表现。接下来,我们定义对比损失函数。在这篇文章中,我们详细介绍了对比学习的基本概念和原理,使用PyTorch实现了简单的对比学习模型,并在MNIST数据集上进行了训练。这种方法能够在没有大量标注数据的情况下,有效地学习到样本的特征,提高分类精度。

2024-10-24 06:30:00 1189

原创 AI学习指南深度学习篇-对比学习的原理

对比学习(Contrastive Learning)作为自监督学习的一种重要方法,近年来在计算机视觉、自然语言处理等领域取得了显著的进展。这种学习方式特别适用于没有大量标注数据的任务,它通过构造样本对来学习有效的表示。本文将详细探讨对比学习的原理,包括正样本和负样本的选择、学习过程中的样本对比,以及如何通过最大化正样本间的相似性和最小化负样本间的相似性来学习表示。

2024-10-23 06:30:00 1105

原创 AI学习指南深度学习篇-对比学习的数学原理

在深度学习的领域中,对比学习作为一种无监督学习方法,逐渐引起了学术界和工业界的广泛关注。对比学习通过对样本间的相似性度量,来提升模型的特征表示能力,成为近年来研究的热点之一。本文将探讨对比学习的数学原理,包括对比损失函数的数学推导、样本相似性度量的数学表达,并解释对比学习的训练过程及其数学推导。

2024-10-23 06:30:00 704

原创 AI学习指南深度学习篇-对比学习(Contrastive Learning)简介

对比学习是一种无监督学习方法,旨在通过比较不同样本之间的相似性和差异性来学习数据的特征表示。对比学习中的关键操作是构建“正样本对”和“负样本对”。正样本对:两个样本具有相似的特征,比如在图片中,同一物体的不同角度或不同的光照条件。负样本对:两个样本具有不同的特征,比如不同物体的图像。通过学习模型将正样本对的距离缩小,负样本对的距离扩大,促进模型对数据的深入理解。对比学习作为一种新兴的无监督学习方法,正在快速发展并广泛应用于多个领域。

2024-10-22 06:30:00 907

原创 AI学习指南深度学习篇-对比损失函数

对比学习是一种通过比较不同样本间的相似性和差异性来学习特征表示的方法。其主要思想是:对于一对正样本(相似样本),模型应学习到它们的特征表示相似,而对于一对负样本(不相似样本),模型应学习到它们的特征表示尽可能不同。对比损失函数可以分为两类:同质性对比损失和异质性对比损失。每种损失函数都有其独特的设计逻辑和适用场景。对比损失函数作为对比学习的重要组成部分,在深度学习模型的训练中发挥了重要作用。

2024-10-22 06:30:00 975

原创 AI学习指南深度学习篇-自编码器的应用

编码器:将输入数据映射到低维潜在空间。潜在表征:低维表示即隐藏层,负责捕捉输入数据的特征。解码器:将低维数据还原为输入数据的重构。自编码器的目标是最小化重构误差,即使输入数据通过网络传递后的输出尽可能地接近原输入数据。自编码器作为深度学习中的关键工具,具备多种应用场景。从特征学习到数据压缩、从图像去噪到生成模型,自编码器能够有效地解决各种问题。通过具体的案例分析,读者可以清楚地看到自编码器的强大应用潜力。随着对自编码器研究的深入,其应用场景将更加广泛,值得深入探讨和研究。

2024-10-21 06:30:00 738

原创 AI学习指南深度学习篇-自编码器的python实践

在本节中,我们构建了一个简单的自编码器模型并训练了MNIST数据集。自编码器成功地重构了输入图像。在这一部分中,我们使用PyTorch成功实现了自编码器,并在MNIST数据集上进行了训练和重构图像的展示。

2024-10-21 06:30:00 1472

原创 AI学习指南深度学习篇-自编码器的变种

编码器:将输入数据压缩成一个潜在空间的表示。解码器:从潜在空间的表示重建输入数据。损失函数:通常使用均方误差(MSE)来衡量重构结果与原始输入之间的差异,用于指导训练过程。自编码器广泛应用于数据降维、特征学习、去噪、生成模型等领域。接下来,我们将介绍几种常见的自编码器变种。稀疏自编码器(Sparse Autoencoder)是一种通过引入稀疏性约束的自编码器,它鼓励隐藏层的激活值尽可能少,进而形成稀疏的特征表示。这种稀疏性可以通过增加一个额外的惩罚项来实现,比如L1正则化。

2024-10-20 06:30:00 790

原创 AI学习指南深度学习篇-自编码器的数学原理

在本文中,我们详细探讨了自编码器的数学原理,包括编码器和解码器的数学推导、损失函数的设计以及自编码器的训练过程。自编码器在无监督学习中的应用潜力巨大,通过有效的特征学习,可以在实际应用中实现降维、数据去噪和生成模型的目标。

2024-10-20 06:30:00 899

原创 AI学习指南深度学习篇-自编码器(Autoencoder)简介

编码器:将输入数据从高维空间压缩到低维空间,学习到潜在的特征表示。解码器:试图重构输入数据,通过将低维特征映射回高维空间。自编码器作为一种有效的无监督学习工具,在特征学习、降维、去噪等方面展现了其独特的优势。随着深度学习技术的不断进步,自编码器的应用场景越来越广泛,能够为数据挖掘和机器学习任务提供强大的支持。未来,随着数据集和模型的不断发展,自编码器有望在更多实际应用场景中发挥重要作用。同时,结合其他深度学习技术,自编码器也将继续演化,形成更为复杂和高效的模型。

2024-10-19 06:30:00 774

原创 AI学习指南深度学习篇-自编码器的基本原理

自编码器通过简洁有效的网络结构以及精心设计的损失函数,实现了对数据的有效压缩与重构。本文介绍了自编码器的基本结构与原理,并通过实例演示了如何利用 Keras 库构建及训练自编码器模型。尽管自编码器在许多应用场景下表现出色,但仍有许多变种和改进的方向值得探索,如变分自编码器(Variational Autoencoder, VAE)等。未来,在深度学习及人工智能的广泛应用中,自编码器定将继续发挥重要作用。

2024-10-19 06:30:00 1036

原创 AI学习指南深度学习篇-预训练模型的数学原理

预训练模型是指通过在大规模数据集上进行训练,使模型捕捉到通用特征后,再在特定任务上进行微调的过程。这一方法在数据稀缺的情况下尤为重要,因为它可以显著提高模型的性能。

2024-10-18 06:30:00 929

原创 AI学习指南深度学习篇-预训练模型的实践

在本篇文章中,我们介绍了如何使用PyTorch和TensorFlow进行预训练模型的微调。通过预训练模型,我们可以快速适应具体应用场景,提高模型的准确性,并减少训练时间。无论是使用Pre-trained模型在图像识别,还是在自然语言处理任务中,理解微调和迁移学习的概念都将为您在深度学习领域添砖加瓦。希望通过以上示例,您能顺利实现自己项目中的预训练模型微调。继续探索深度学习的世界吧!

2024-10-18 06:30:00 608

原创 AI学习指南深度学习篇-预训练模型的类型

预训练模型是指一个在某个特定任务上训练过的深度学习模型,通过在大规模的通用数据集上进行预先训练,以获得更深层次的特征表示。它的主要目的是加速模型训练过程,减少过拟合风险,并增强模型的泛化能力。预训练模型在多个领域中都有广泛的应用,包括计算机视觉、自然语言处理等。通过使用预训练模型,研究人员和工程师能够更高效地解决特定任务。自监督学习是一种无监督学习的变体,其中模型通过生成部分数据来学习。模型在训练过程中自动创建标签,从而不需要人为标注。这种方式特别适合于大规模数据集的利用。

2024-10-17 06:30:00 721

原创 AI学习指南深度学习篇- 预训练模型的原理

预训练模型是指在一个大型数据集上进行训练,以学习到通用特征的模型。通过这种方式,模型可以在没有从头开始训练的情况下,立刻应用于相关任务中。预训练的目标是学习有用的特征表示,随后在特定任务上进行微调,以获得更优的表现。微调是指在特定任务上对预训练模型进行细致的训练,以进一步提升模型在该任务上的表现。此过程通常在一个相对较小的、标注过的数据集上进行。预训练模型以其显著的效果和灵活性,已经成为深度学习领域的一项基础技术。它通过在大规模数据集上学习通用特征,使得在特定任务上的微调变得快速而高效。

2024-10-17 06:30:00 651

原创 AI学习指南深度学习篇-迁移学习的实践

迁移学习是一种机器学习方法,它利用在一个领域上训练得来的知识,来帮助另一个相关领域的学习。具体来说,它可以在有大量数据的任务上训练出模型,并将该模型的权重和配置迁移到一个数据较少的相似任务上。迁移学习是一种强大的技术,能够有效提高模型在少量数据上的表现。通过使用 TensorFlow 和 PyTorch,我们可以简单地实现迁移学习的各种操作。本文提供了详细的代码示例,这将有助于您在实际项目中应用迁移学习。

2024-10-16 06:30:00 889

原创 AI学习指南深度学习篇-预训练模型(Pre-trained Models)简介

预训练模型是指在一个大的、通用的数据集上预先训练好的模型,这些模型可以被用作特定任务的基础模型。这样做的好处在于,我们可以利用模型在学习过程中提取到的特征,来完成新的、但相关的任务。预训练模型的出现,显著改变了深度学习的训练方式,减轻了对大量标注数据的依赖,提升了模型在新任务上的表现。本文详细探讨了预训练模型的背景、定义以及在解决数据稀缺和迁移学习等问题中的应用,并提供了多个实际案例。相信随着技术的不断进步,预训练模型将在深度学习中扮演越来越重要的角色,推动人工智能技术的前进。

2024-10-16 06:30:00 821

原创 AI学习指南深度学习篇-迁移学习的数学原理

在迁移学习中,损失函数设计至关重要,选择合适的损失函数可以显著提高模型的训练效果。均方误差损失(MSE)交叉熵损失对比损失。

2024-10-15 06:30:00 1245

原创 AI学习指南深度学习篇-迁移学习的应用场景

迁移学习利用在某个任务上获得的知识来提高在另一个相关任务上的学习效率。其关键在于寻找源任务(source task)和目标任务(target task)之间的相似性,如同一领域的不同子任务。

2024-10-15 06:30:00 1102

原创 AI学习指南深度学习篇-迁移学习(Transfer Learning)简介

迁移学习可以被定义为在一个特定的源领域 (source domain) 中获取知识,然后把这些知识应用于一个不同的目标领域 (target domain),旨在提高目标领域中的学习效果。换句话说,即使目标领域没有足够的数据,模型依然能够优化其性能。微调 (Fine-tuning): 将预训练模型的一部分或全部参数调整到新的任务上。这通常用于当目标任务与源任务相似时。特征提取 (Feature Extraction)

2024-10-14 06:30:00 2044

原创 AI学习指南深度学习篇-迁移学习的基本原理

迁移学习为深度学习提供了一种新的视角,使得模型在面对数据稀缺或高昂的标注成本时仍能发挥作用。通过合理选择源领域知识,特征提取与微调的策略,可以在许多领域取得令人瞩目的成果。然而,研究者在应用迁移学习时仍需考虑源领域与目标领域之间的关系,确保知识的有效迁移。希望这篇文章能为您理解迁移学习提供一些帮助与启发,让我们共同期待迁移学习未来的更多突破与应用!

2024-10-14 06:30:00 765

原创 AI学习指南深度学习篇-变分自编码器在深度学习中的实际应用

变分自编码器是一种生成模型,它通过编码器-解码器结构实现数据的生成与重建。与传统的自编码器不同,VAE在潜在空间中引入了概率分布,使得生成的新样本具有更好的多样性。

2024-10-13 06:30:00 782

原创 AI学习指南深度学习篇-变分自编码器Python实践

在本文中,我们通过TensorFlow和PyTorch两个深度学习库实现了变分自编码器(VAE),并介绍了其基本概念、模型构建、损失函数及训练过程。变分自编码器不仅在生成模型中具有重要应用,还能够用于数据降维、特征学习等领域。在未来的研究中,读者可以尝试改进此模型,比如添加更多的层、使用更复杂的损失函数,或将其应用于其他类型的数据集(如图像、文本等)。

2024-10-13 06:30:00 554

原创 AI学习指南深度学习篇-变分自编码器的数学原理

变分自编码器的目标是学习一个潜在空间,使得通过该空间生成的数据能够很好地重构输入数据。与普通自编码器不同,VAE通过正则化潜在空间,使得它能够生成多样的数据。

2024-10-12 06:30:00 1626

原创 AI学习指南深度学习篇-变分自编码器的应用与扩展

变分自编码器是一种生成模型,它通过编码器和解码器的结构将输入数据映射到潜在空间,并从该潜在空间中生成新数据。与传统自编码器不同,VAE引入了变分推断的理念,使模型能够通过最大化变分下界来学习潜在分布。Lθϕ;xEqϕ​z∣x​logpθ​x∣z)]−DKL​qϕ​z∣x∣∣pz))x(x)x是输入数据。

2024-10-12 06:30:00 676

原创 AI学习指南深度学习篇-变分自编码器(VAE)简介

变分自编码器(VAE)在深度学习领域展现了其强大的生成能力,以其灵活性和高效性成功解决了许多复杂任务。与传统自编码器相比,VAE能够更好地建模潜在变量的分布,使得生成的样本更具多样性和真实性。随着研究的深入,VAE及其变体在许多领域中被广泛应用,并且继续吸引大量研究者的关注。

2024-10-11 06:30:00 1022

原创 AI学习指南深度学习篇-变分自编码器的基本原理

变分自编码器(Variational Autoencoder,VAE)是一种生成模型,利用神经网络学习复杂的高维数据分布。与传统的自编码器不同,VAE不仅仅学习数据的有效表示,还能够生成新的数据,从而对原始数据分布进行建模。VAE的核心思想是引入概率图模型,通过优化变分下界来实现模型学习。变分自编码器是一种强大的生成模型,能够有效地学习数据分布。在本文中,我们详细探讨了变分自编码器的基本原理,包括编码器和解码器的结构、潜在空间的建模,以及如何通过最大化变分下界来进行模型训练。

2024-10-11 06:30:00 651

原创 AI学习指南深度学习篇-生成对抗网络的Python实践

生成对抗网络由Ian Goodfellow等人在2014年提出。生成器 (Generator):尝试生成真实的样本,以“欺骗”判别器。判别器 (Discriminator):尝试区分真实样本和生成器生成的假样本。GAN的数学定义非常简单,通过最小化一个特定的损失函数来实现这两个网络的对抗。model.add(layers.Dense(128, activation="relu", input_shape=(100,))) # 输入100维噪声向量。

2024-10-10 06:30:00 1757

原创 AI学习指南深度学习篇-生成对抗网络的变体及扩展

生成对抗网络(GAN)自2014年由Ian Goodfellow等人首次提出以来,迅速成为深度学习领域的一项重要技术。GAN的核心思想是通过两个神经网络的对抗训练来生成新的样本数据,这一过程可以在图像生成、图像编辑、超分辨率重建等诸多领域发挥巨大的作用。本文将重点介绍GAN的变体及其扩展,特别是条件生成对抗网络(cGAN)和Wasserstein GAN(WGAN)。我们将深入探讨这些变体的特点以及在各自应用领域的表现。

2024-10-10 06:30:00 885

原创 AI学习指南深度学习篇-生成对抗网络的数学原理

生成对抗网络(GAN)是一种深度学习模型,由Ian Goodfellow等人在2014年提出。GAN采用生成器与判别器对抗的方式进行数据生成,其在图像生成、图像超分辨率、文本生成等领域有着广泛的应用。本文将深入探讨生成对抗网络的数学原理,解析生成器和判别器的损失函数、博弈过程中的最优化问题以及训练过程的数学推导。

2024-10-09 06:30:00 1006

原创 AI学习指南深度学习篇-生成对抗网络在深度学习中的应用

生成对抗网络由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器的目标是生成接近真实数据分布的假数据,而判别器的目标是判断给定的数据是真实的还是生成的。这两个网络通过对抗训练,不断相互优化,最终使生成器能够生成高质量的假数据。

2024-10-09 06:30:00 1661

原创 AI学习指南深度学习篇-生成对抗网络(GAN)简介

在人工智能领域,深度学习的进步使得计算机可以生成图像、音频和文本等多种形式的数据。其中,生成对抗网络(GAN)作为一种强大的生成模型,向我们展示了计算机如何“创造”。本篇文章将系统地介绍生成对抗网络的背景、基本原理以及它在深度学习中的重要性,重点讨论在图像生成、风格迁移等领域的实际应用。

2024-10-08 06:30:00 2109

chrome-win64.zip

124版本全平台chrome和chromedriver离线安装包,详细版本号:124.0.6318.0

2024-02-24

chrome-win32.zip

124版本全平台chrome和chromedriver离线安装包,详细版本号:124.0.6318.0

2024-02-24

chrome-linux64.zip

124版本全平台chrome和chromedriver离线安装包,详细版本号:124.0.6318.0

2024-02-24

chrome-mac-arm64.zip

124版本全平台chrome和chromedriver离线安装包,详细版本号:124.0.6318.0

2024-02-24

chromedriver-win64.zip

124版本全平台chrome和chromedriver离线安装包,详细版本号:124.0.6318.0

2024-02-24

chromedriver-mac-arm64.zip

124版本全平台chrome和chromedriver离线安装包,详细版本号:124.0.6318.0

2024-02-24

chromedriver-linux64.zip

124版本全平台chrome和chromedriver离线安装包,详细版本号:124.0.6318.0

2024-02-24

chromedriver-win32.zip

124版本全平台chrome和chromedriver离线安装包,详细版本号:124.0.6318.0

2024-02-24

chrome-win64.zip

123版本全平台chrome和chromedriver离线安装包,详细版本号:123.0.6312.4

2024-02-24

chrome-mac-x64.zip

123版本全平台chrome和chromedriver离线安装包,详细版本号:123.0.6312.4

2024-02-24

chrome-mac-arm64.zip

123版本全平台chrome和chromedriver离线安装包,详细版本号:123.0.6312.4

2024-02-24

chrome-win32.zip

123版本全平台chrome和chromedriver离线安装包,详细版本号:123.0.6312.4

2024-02-24

chrome-linux64.zip

123版本全平台chrome和chromedriver离线安装包,详细版本号:123.0.6312.4

2024-02-24

chromedriver-win32.zip

123版本全平台chrome和chromedriver离线安装包,详细版本号:123.0.6312.4

2024-02-24

chromedriver-win64.zip

123版本全平台chrome和chromedriver离线安装包,详细版本号:123.0.6312.4

2024-02-24

chromedriver-mac-x64.zip

123版本全平台chrome和chromedriver离线安装包,详细版本号:123.0.6312.4

2024-02-24

chromedriver-linux64.zip

123版本全平台chrome和chromedriver离线安装包,详细版本号:123.0.6312.4

2024-02-24

chromedriver-mac-arm64.zip

123版本全平台chrome和chromedriver离线安装包,详细版本号:123.0.6312.4

2024-02-24

chrome-win32.zip

122版本全平台chrome和chromedriver离线安装包,详细版本号:122.0.6261.69

2024-02-24

chrome-mac-x64.zip

122版本全平台chrome和chromedriver离线安装包,详细版本号:122.0.6261.69

2024-02-24

chrome-mac-arm64.zip

122版本全平台chrome和chromedriver离线安装包,详细版本号:122.0.6261.69

2024-02-24

chrome-linux64.zip

122版本全平台chrome和chromedriver离线安装包,详细版本号:122.0.6261.69

2024-02-24

chromedriver-win32.zip

122版本全平台chrome和chromedriver离线安装包,详细版本号:122.0.6261.69

2024-02-24

chromedriver-mac-x64.zip

122版本全平台chrome和chromedriver离线安装包,详细版本号:122.0.6261.69

2024-02-24

chromedriver-mac-arm64.zip

122版本全平台chrome和chromedriver离线安装包,详细版本号:122.0.6261.69

2024-02-24

chromedriver-linux64.zip

122版本全平台chrome和chromedriver离线安装包,详细版本号:122.0.6261.69

2024-02-24

chrome-win64.zip

chrome-win64

2024-02-24

chromedriver-win64.zip

chromedriver-win64

2024-02-24

CKA-2019年培训视频-分卷03(关注后可免费下载)

在淘宝上买的CKA的培训视频。视频里用的k8s版本是1.13的不是最新的1.19,但是知识点都是一样的,没有多大变化。整个视频是2.45G,太大了就用分卷压缩了,这是03分卷,要三个分卷全部下载了才可以解压

2020-10-21

CKA-2019年培训视频-分卷02(关注后可免费下载)

在淘宝上买的CKA的培训视频。视频里用的k8s版本是1.13的不是最新的1.19,但是知识点都是一样的,没有多大变化。整个视频是2.45G,太大了就用分卷压缩了,这是02分卷,要三个分卷全部下载了才可以解压

2020-10-21

CKA-2019年培训视频-分卷01(关注后可免费下载)

在淘宝上买的CKA的培训视频。视频里用的k8s版本是1.13的不是最新的1.19,但是知识点都是一样的,没有多大变化。整个视频是2.45G,太大了就用分卷压缩了,另外两个分卷也在我的下载里免费的大家下载把。

2020-10-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除