简单的总结了flink的几种source来源,可以参考下
package com.atguigu.apitest
import java.util.Properties
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.functions.source.SourceFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011
import scala.util.Random
/**
* 功能:演示 flink的source来源
*
*/
// 定义样例类,温度传感器
case class SensorReading(id:String, timestamp: Long,temmperature:Double )
object SourceTest {
def main(args: Array[String]): Unit = {
// 创建执行环境
val env=StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
// 1 从集合中读取数据
val dataList=List(
SensorReading("sensor_1", 1547718199, 35.8),
SensorReading("sensor_6", 1547718201, 15.4),
SensorReading("sensor_7", 1547718202, 6.7),
SensorReading("sensor_10", 1547718205,

这篇博客总结了Flink接入数据的各种来源,重点介绍了如何配置和使用Kafka作为数据输入源。强调了不同Kafka版本参数的区别,如新版本使用`bootstrap.servers`,而旧版本使用`zookeeper`节点。指出Flink与低版本Kafka配合可能出现TimeoutException问题,并推荐使用v2.8.1版本。
最低0.47元/天 解锁文章
406

被折叠的 条评论
为什么被折叠?



