- 博客(6)
- 资源 (13)
- 收藏
- 关注
SNL(桑迪亚)-EFDC代码
EFDC是美国环保部门EPA开发的水动力学-水质数值模型,在水坏境保护领域广泛采用。现在(2018.09)最新版的EFDC已经不再开源,EPA网站上仅提供可执行安装文件的下载。SNL-EFDC是美国能源部的SNL国建实验室在EPA发布的EFDC的基础上改进后的版本,修改的源码文件名加有前缀s_.本上传版本注释了Makefile中的ifort的编译选项-static,防止出现:cannot find -lm。
2018-09-11
代码优化后的FCM C++代码
该程序是“基于C++的经典模糊C均值聚类算法”(写于2008年)的优化改进版本:
参考文献: Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:Plenum Press, 1981
(1)优化了动态内存管理,部分动态数组采用了容器vector来处理;
(2)添加了更多的代码注释,以及运行方式说明;
(3)更加规范地整理了代码的书写排布风格;
(4)采用VS2015建立的工程;
(5)可以完全取代原版本的代码Repeat FCM.rar。
注:如果方便,恳请管理员将旧版的资源“Repeat FCM.rar”删除。
2018-08-01
基于MPI-GA的TSP问题C++代码
基于并行遗传算法的TSP问题C++代码,本代码改编自《Parallel Genetic Algorithms: A Typical MPI Application》,添加了丰富的代码注释。
2018-07-31
CFL3D V6.7 开源代码
源自于NASA的,著名的,结构化网格CFD程序,采用Fortran语言编写,支持基于MPI库的并行计算。2017年8月份开始开源,在这之前国内只有一小部分做CFD研究和应用的人拥有,而且保护的很严格。
2018-07-31
chalmesh-1.19a
Public Domain, Stand-alone Mesh/Grid Generator, Structured Grid Generation, Overlapping, Chimera grids, Hyperbolic structured mesh generation
2016-12-23
Calculix.ccx-2.11
Calculix由 Fortran和C语言编写,最初只有Linux版本,现在提供Windows版本和FEMAP集成的后处理器http://openeng.org/
Calculix是一款功能较强大的有限元求解器, 可以进行有限元建模,计算和后处理。
求解器支持: 线性,非线性,静态,动态,热,流体解决方案。支持丰富的单元类型,多种求解类型,优秀的求解性能,支持并行处理等,都赋予Calculix较强解决实际工程的能力。由于求解器利用Abaqus输入格式 *.inp,所以可以方便地与Abaqus做benchmark,减少了工作量。同时Calculix还能将有限元模型写成NASTRAN,ABAQUS,ANSYS,Code ASTER和OpenCFD 求解格式。
2016-12-23
Windows 版的Parmetis: ParMetis-3.1.1-Win
Windows 版的Parmetis: ParMetis-3.1.1-Win, 适用于并行CFD过程的网格剖分。
2012-06-25
英特尔多核/多线程技术-资料汇集
这是源自于英特尔软件网络的多线程技术资料,其中详细汇集了多线程编程方法的综述,Linux/Unix多线程编程,Windows多线程编程,以及多线程程序设计中的常见问题及解决途径。
2010-02-21
SQP Algorithm C++ code in VS2005 IDE
The Sequential Quadratic Programming (SQP) Algorithm
Given a solution estimate xk, and a small step d, an arbitrary numerical optimization problem can be approximated as follow:
f(xk+d)=f(xk)+[▽f(xk)] T*d + 1/2*(dT)[▽2f(xk)]*d+....
h(xk+d)=h(xk)+[▽h(xk)]T*d + 1/2*(dT)[▽2h(xk)]*d+.... = 0
g(xk+d)=g(xk)+[▽g(xk)]T*d + 1/2*(dT)[▽2g(xk)]*d+.... >= 0
where x=[x1,x2,…xk]T, d=[d1,d2,…dk]T
Form the linearly-constrained/quadratic minimization problem:
Minimize: f(xk)+[▽f(xk)]T*d + 1/2*(dT)[▽2f(xk)]*d
Subject to:
h(xk)+[▽h(xk)]T*d = 0;
g(xk)+[▽g(xk)]T*d >=0;
In the SQP loop, the approximate QP should be a convex Quadratic Programming, in which the matrix Q = ▽2f(xk) should be positive semidefinite, Q ≥ 0. Actually, the Q is the Hessian matrix of the function f(x) at the point xk.
2009-11-30
基于C++的经典模糊C均值聚类算法
基于C++的经典模糊C均值聚类算法
参考文献: Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:Plenum Press, 1981
2008-09-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅