【ubantu】服务器深度学习配置记录 (base) lizhe-427@ser427:~/下载/pycharm-community-2022.2.3/bin$ sudo sh pycharm.sh。进入到/home/lizhe-427/下载/pycharm-community-2022.2.3/bin。3.启动pycharm报错。
【代码错误记录】显示数据集图片-图片tensor问题 matplotlib.pyplot.imshow()函数的输入需要是二维的numpy或者是第三维度是3或4的numpy,解决这个问题的关键就是理解了imshow函数的参数。
【深度学习】语义分割:论文阅读:(2021-12)Mask2Former 论文:Masked-attention Mask Transformer for Universal Image Segmentation代码:官方-代码代码视频:b站论文讲解笔记参考:翻译版Mask2Former在MaskFormer的基础上,本文的改进呢**主要是mask attention还有high-resolution features,**本质上是一个金字塔,剩下的一些关于训练上的还有optimization上改进呢,能够提高训练速度masked attention我们知道dec
【深度学习】语义分割:论文阅读(NeurIPS 2021)MaskFormer: per-pixel classification is not all you need 目录详情知识补充语义分割实例分割动机Related WorksPer-pixel classification formulationMask classification formulationMaskFormerPixel-level moduleTransformer moduleSegmentation module掩膜分类推理语义推理详情论文:Per-Pixel Classification is Not All You Need for Semantic Segmentation / Mas
【深度学习】语义分割:论文阅读:(CVPR 2022) MPViT(CNN+Transformer):用于密集预测的多路径视觉Transformer 这里写目录标题0详情1摘要2 主要工作3 网络结构3.1 Conv-stem3.2 Multi-Scale Patch Embedding3.3 Multi-path Transformer3.3.1 多路径Transformer和局部特征卷积CoaT的因素分解自注意深度可分离卷积3.3.2Global-to-Local Feature Interaction4 实验- Semantic segmentation5总结0详情论文:MPViT : Multi-Path Vision Transformer
【深度学习】语义分割-源代码汇总 目录Transformer卷积Transformer1.官方-vision_transformer2.官方- Swin-Transformer 3.官方-Swin-Transformer-Semantic-Segmentation4.官方-SETR5.官方-segformer卷积
【实验】vit代码 这里写目录标题参考讲解一:代码+理论版本一:lucidrains1. 大佬复现版本给的使用案例2. Transformer结构3. Attention4. FeedForward5. ViT操作流程版本二 :rwightman 源码可直接运行PatchEmbed模块Attention模块MLP Block(图中的名字)/FeedForward类(代码中的实现)Encoder Block主模块VisionTransformer类参考霹雳吧啦Wz-pytorch_classification/vision_
【实验】语义分割-数据集 这里写目录标题参考数据集VOC 2012 数据集组件预处理数据总结代码参考视频李沐-语义分割和数据集【动手学深度学习v2】笔记李沐视频-笔记视频笔记本文主要讲语义分割的经典数据集——VOC2012,的读取。一句话概括语义分割:在图片中进行像素级的分类数据集最重要的语义分割数据集之一是 Pascal VOC 2012这个数据集有自己的格式 – VOC格式,它是一个使用非常广泛的格式(VOC、COCO 都是比较有名的数据集)VOC 2012 数据集组件ImageSets/Segmenta
【深度学习】(ICCV-2021)PVT-金字塔 Vision Transformer及PVT_V2 目录详情详情名称:Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions论文:原文代码:官方代码笔记参考:1.语义分割中的Transformer(第三篇):PVT — 用于密集预测任务的金字塔 Vision Transformer...
【深度学习】语义分割-数据集调研-处理方法 目录参考笔记简述数据集ADE20K数据量场景数据集格式:Cityscapes数据量参考笔记【语义分割】——语义分割数据集总结 ADE20K/cityScapes/VOC12_AUG简述不同的图像语义分割方法在处理相同类型的图像时的效果参差不齐,而且不同的图像语义分割方法擅长处理的图像类型也各不一样。为了对各种图像语义分割方法的优劣性进行公平的比较,需要一个包含各种图像类型且极具代表性的图像语义分割数据集来测试并得到性能评估指标。下面将依次介绍图像语义分割领域中常用的数据集,所有常用数据集的数据对比
【深度学习】实验流程-语义分割框架 这里写目录标题笔记参考常见的Research workflowswin做backbone实验方法笔记参考1.【干货】深度学习实验流程及PyTorch提供的解决方案常见的Research workflow某一天, 你坐在实验室的椅子上, 突然:你脑子里迸发出一个idea你看了关于某一theory的文章, 想试试: 要是把xx也加进去会怎么样你老板突然给你一张纸, 然后说: 那个谁, 来把这个东西实现一下于是, 你设计了实验流程, 并为这一idea 挑选了合适的数据集和运行环境, 然后你废寝忘食
【深度学习】CNN+Transformer汇总 这里写目录标题参考前言cnn与transformerConformer(国科大&华为&鹏城)详情参考1.CNN+Transformer算法总结前言总结了2021年以来,所有将CNN与Transformer框架结合的CV算法在卷积神经网络(CNN)中,卷积运算擅长提取局部特征,但在捕获全局特征表示方面还是有一定的局限性。 在Vision Transformer中,级联自注意力模块可以捕获长距离的特征依赖,但会忽略局部特征的细节。cnn与transformerCNN具有非常良好
【深度学习】名词解释 这里写目录标题0.详情0.详情名称:Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation时间:2018单位:Robin A. M. Strudel论文:论文代码:paperwithcode的代码笔记参考:
【深度学习】语义分割-综述(卷积) 这里写目录标题0.笔记参考1. 目的2. 困难点3. 数据集及评价指标3.1数据集3.2评价指标4.实现架构5. 模型发展5.1基于全卷积的对称语义分割模型5.1.1FCN(2014/11/14)5.1.1.1具体过程5.1.1.2 CNN 与 FCN5.1.1.3全连接层 -> 成卷积层5.1.1.4 upsampling5.1.1.5局限5.1.2 SegNet(2015/11/2)5.1.2.1 结构5.1.2.2 decoder变体SegNet-Basic5.1.2.3 对比SegNet和FC
【深度学习】语义分割-研究思路 这里写目录标题笔记参考截至2020-5找思路方法文章核心实现笔记参考1.知乎回答:语义分割如何走下去截至2020-5找思路方法链接:https://www.zhihu.com/question/390783647/answer/1221984335(1)手动设计网络结构 -> NAS搜索;(2)固定感受野 -> 引入空间注意力做感受野自动调节;(3)效果提升不上去 -> 换个思路做实时分割来对比结果;(4)有监督太热门 -> 引入弱监督 (GAN, 知识蒸馏, …)
【深度学习】论文阅读:(ICCV-2021))Segmenter:Transformer for Semantic Segmentation 这里写目录标题详情详情名称:Segmenter:Transformer for Semantic Segmentation时间: last revised 2 Sep 2021 (this version, v3)]单位:Robin A. M. Strudel论文:论文代码:
论文阅读框架 这里写目录标题参考框架一框架二信息简介创新点AbstractMethodExperiments参考1.如何读论文2.框架一 swim3.框架二 Segmenting框架一摘要论文速读1.论文试图解决什么问题?2.这是否是一个新问题?3.这篇文章要验证一个什么科学假设?4.有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?5.论文中提到的解决方案之关键是什么?6.论文中的实验是如何设计的?7.用于定量评估的数据集是什么?代码有没有开源?8.论文中的实验及结果有没有
【深度学习】语义分割-论文阅读:( NeurIPS 2021 )SegFormer 这里写目录标题0.详情1.动机2. 改进点3.相关工作4. Method4.1 Hierarchical Transformer Encoder4.1.1 分层特性表示(Hierarchical Feature Representation)4.1.2 重叠合并(Overlapped Patch Merging)4.1.3 自注意机制(Efficient Self-Attention)4.1.4 混合前馈网络(Mix-FFN)4.2 Lightweight ALL-MLP DecoderALL-MLP解码结
【深度学习】语义分割-论文阅读:( CVPR 2021)SETR:Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspe 这里写目录标题详情详情名称:Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers单位:复旦, 牛津大学, 萨里大学, 腾讯优图, Facebook论文:论文代码:代码