【深度学习】语义分割-研究思路

笔记参考

1.知乎回答:语义分割如何走下去
2.详解Swin Transformer核心实现,经典模型也能快速调优
4.深度学习领域怎么找创新点总结

截至2020-5

找思路-1

链接:https://www.zhihu.com/question/390783647/answer/1221984335

(1)手动设计网络结构 -> NAS搜索;
(2)固定感受野 -> 引入空间注意力做感受野自动调节;
(3)效果提升不上去 -> 换个思路做实时分割来对比结果;
(4)有监督太热门 -> 引入弱监督 (GAN, 知识蒸馏, …) + trick = 差不多的score;
(5)DNN太枯燥,融入点传统视觉的方法搞成end-to-end训练;
(6)CNN太单调,配合GCN搞点悬念;
(7)嫌2D太low逼,转3D点云分割;
(8)将CNN的套路在Transformer做多一遍;

觉得太懒?积木堆起:A+B,A+B+C,A+B+C+D,…

积木总结:
A-注意力机制:SE ~ Non-local ~ CcNet ~ GC-Net ~ Gate ~ CBAM ~ Dual Attention ~ Spatial Attention ~ Channel Attention【只要你能熟练的掌握加法、乘法、并行、串行四大法则,外加知道一点基本矩阵运算规则(如:HW * WH = HH)和sigmoid/softmax操作,那么你就能随意的生成很多种注意力机制】

B-卷积结构:Residual block ~ Bottle-neck block ~ Split-Attention block ~ Depthwise separable convolution ~ Recurrent convolution ~ Group convolution ~ Dilated convolution ~ Octave convolution ~ Ghost convolution ~ …
直接替换掉原始卷积块就完事了

C-多尺度模块:ASPP ~ PPM ~ DCM ~ DenseASPP ~ FPA ~ OCNet ~ MPM…
好好把ASPP和PPM这两个模块理解一下,搞多/减少几条分支,并联改成串联或者串并联结合,每个分支搞点加权,再结合点注意力或者替换卷积又可以组装上百种新结构出来了

D-损失函数:Focal loss ~ Dice loss ~ BCE loss ~ Wetight loss ~ Boundary loss ~ Lovász-Softmax loss ~ TopK loss ~ Hausdorff distance(HD) loss ~ Sensitivity-Specificity (SS) loss ~ Distance penalized CE loss ~ contour-aware Loss…

E-池化结构:Max pooling ~ Average pooling ~ Random pooling ~ Strip Pooling ~ Mixed Pooling ~…

F-归一化模块:Batch Normalization ~Layer Normalization ~ Instance Normalization ~ Group Normalization ~ Switchable Normalization ~ Filter Response Normalization…

G-学习衰减策略:StepLR ~ MultiStepLR ~ ExponentialLR ~ CosineAn

近年来,裂缝检测在道路维护和安全评估中变得越来越重要。为了提高裂缝检测的准确性和效率,一些研究者提出了基于注意力机制的裂缝检测网络。这种网络采用编码器-解码器的结构,其中编码器使用ResNet34作为骨干网来提取裂缝特征。在编码器和解码器之间,引入了基于注意力机制的特征模块(attention-based feature module, AFM),以利用全局信息并增加对不同尺度裂缝的鲁棒性,更好地提取和定位裂缝位置。而在解码器阶段,也引入了注意力机制,设计了基于注意力机制的解码模块(attention-based decoder module, ADM),以实现对裂缝的准确定位。实验结果表明,这种注意力机制的裂缝检测网络在裂缝检测效果上更理想,裂缝的定位更准确,细节更丰富。在实验指标F1和重合率上,也都有明显的提升,证明了这种网络的有效性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [【文献阅读笔记】之基于注意力机制的深度学习路面裂缝检测](https://blog.csdn.net/qq_44785998/article/details/123992994)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [国庆假期看了一系列图像分割Unet、DeepLabv3+改进期刊论文,总结了一些改进创新的技巧](https://blog.csdn.net/qq_38668236/article/details/127187082)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值