要求不用任何判断操作比较正整数a和b的大小。
任何整数都是由2进制位组成的,正整数的最高位(第31位)为0,可以按照二进制从高位到低位按位"比较"(此处改为对应为相减再加1)来决定正整数a和b的大小关系。
设正整数a有a[31],a[30],a[29],.....a[2],a[1],a[0]组成,正整数b由b[31],b[30],b[29],.....b[2],b[1],b[0]组成,且有a[31]=b[31]=0。
可以按照如下式子得到a和b 的大小关系:
((a[30]^b[30])&&(a[30]-b[30]+1}) || ((a[29]^b[29])&&(a[29]-b[29]+1)) ||......||((a[0]^b[0])&&(a[0]-b[0]+1))
解释: 这个式子其实是在比较a和b的第30位,29位,...0位,如果高位i满足a[i]=1,b[i]=0, 返回1,逻辑或短路结束。其中的异或是为了把2个数相同的情况去掉。
a[i]-b[i]+1,当a[i]>b[i],此数为2,对逻辑与来说是true; 当a[i]<b[i],此数为0, 对逻辑与是false。加1的目的就是为了当a[i]-b[i]=-1(a[i]=0,b[i]=1)时,把-1变成0。
这个是今天再次看到这个似曾相识却又不会的题目自己想出来的,还和一位同学信件讨论过,感谢这位不认识的同学。
(2)方法2: 判断a-b的符号位。
int c = a - b;
c = (unsigned int)c >> (sizeof(int)*8-1);
这样c是0说明a-b的符号位为0, a 〉b; c为1说明a-b的符号位为1, a < b。
引用同学的做法,表示感谢。