不用任何比较操作判断正整数a和b的大小

要求不用任何判断操作比较正整数a和b的大小。

任何整数都是由2进制位组成的,正整数的最高位(第31位)为0,可以按照二进制从高位到低位按位"比较"(此处改为对应为相减再加1)来决定正整数a和b的大小关系。

设正整数a有a[31],a[30],a[29],.....a[2],a[1],a[0]组成,正整数b由b[31],b[30],b[29],.....b[2],b[1],b[0]组成,且有a[31]=b[31]=0。

可以按照如下式子得到a和b 的大小关系:

((a[30]^b[30])&&(a[30]-b[30]+1}) || ((a[29]^b[29])&&(a[29]-b[29]+1)) ||......||((a[0]^b[0])&&(a[0]-b[0]+1))

解释: 这个式子其实是在比较a和b的第30位,29位,...0位,如果高位i满足a[i]=1,b[i]=0, 返回1,逻辑或短路结束。其中的异或是为了把2个数相同的情况去掉。

a[i]-b[i]+1,当a[i]>b[i],此数为2,对逻辑与来说是true; 当a[i]<b[i],此数为0, 对逻辑与是false。加1的目的就是为了当a[i]-b[i]=-1(a[i]=0,b[i]=1)时,把-1变成0。

这个是今天再次看到这个似曾相识却又不会的题目自己想出来的,还和一位同学信件讨论过,感谢这位不认识的同学。

(2)方法2: 判断a-b的符号位。

int    c   = a - b;

c = (unsigned int)c   >> (sizeof(int)*8-1);

这样c是0说明a-b的符号位为0, a 〉b;   c为1说明a-b的符号位为1, a < b。

引用同学的做法,表示感谢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值