海量数据处理:MapReduce法

550 篇文章 558 订阅 ¥49.90 ¥99.00
本文介绍了如何使用MapReduce法处理海量数据,特别是针对Top K问题提供了多种解决方案,包括数据全部排序、局部淘汰法、分治法、hash法和最小堆法。文章详细阐述了每种方法的原理和适用场景,并给出了实际应用的例子。
摘要由CSDN通过智能技术生成

海量数据处理:MapReduce法

MapReduce适用于大规模数据集(通常大于1TB)的并行运算,核心操作是Map(映射)和Reduce(化简)。Map函数独立地对每个元素进行操作,用于把一组健值对映射成一组新的健值对,即先通过Map程序将数据切割成不相关的区域,分配(调度)给大量计算机处理达到分布计算的效果,然后通过指定并发的Reduce函数来将结果汇总,保证所有映射键值对中的每一个共享相同的键组。

  • Map是把一组数据一对一地映射为另外的一组数据,其映射的规则由一个函数来指定,例如对【1,2,4,8】进行乘2的映射就变为【2,4,8,16】。
  • Reduce是对一组数据进行规约,这个规约的规则是由另外一个函数指定的,例如对【1,2,4,8】进行求和规约得到的结果是15

一、top K问题

在海量数据中找出出现频率最高的前K个数,或者从海量数据中找出最大的前K个数,这类问题称为top K问题。

  • 针对top K类问题,通常比较好的方案是分治+Trie树/hash+小堆顶,
  • 即先
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快乐骑行^_^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值