vis18-传达生物信息的多流水线系统

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/zhihuier/article/details/80181926

QAQ  公众号竟然没出现加原创标记的那个步骤,哪里搞错勒 暴风哭泣  QAQ

原文链接:可视化论文与英语学习


论文: Visualization Multi-Pipeline for Communicating Biology

作者: Peter Mindek, David Kouˇ ril, Johannes Sorger

单位: 维也纳大学,简称 TU Wien

会议: Vis2018


一.论文背景

生物学家会得到许多人体细胞的共聚焦显微数据,这些原始数据以标量体数据的形式存在,通常表现为低分辨率/诸多通道(共聚焦激光扫描显微镜能够对单个细胞器进行扫描,每个细胞器都会有自己的体数据)的形式,对一般用户来说,并不容易理解.


习惯上,为了将这些数据的信息传达出来,需要生物学家将数据口头描述给绘制人员,绘制人员再利用一些3D建模软件进行绘制.效果如图1所示. 基本流程如图2(A)所示.

图1.传统绘制效果示例


这种方法的缺点有:①费时②结果无法交互

为了解决以上两个问题,本文提出Marion系统.


二.Marion系统


1️.概述

Marion系统直接输入扫描出的人体细胞的共聚焦显微数据,利用多种可视化技术手段,生成细胞的可视化效果图.基本流程如图2中(B)所示.


2.构成

Marion系统由数据处理/绘制/合成/部署四大部分构成.如图2中(B)所示.

图2.(A)传统绘制 (B)Marion系统绘制


数据处理:

对数据进行输入,过滤简化等一系列处理.

首先要对多细胞器结构进行分割.

对于细胞膜等,需进行平滑处理并转换为网格形式;

对于线粒体/细胞微管等细胞器等管状结构,需进行骨干分割处理;

某些情况下,还需直接显示原始数据的形式.


绘制

对不同的数据形式进行分别绘制至离屏缓冲区,同时输出每个图片的深度缓存.

单独的图像根据深度信息稍后在图像空间中合成在一起.如图3所示.

图3. (a)细胞膜 (b)细胞核 (c)线粒体 (d)细胞微管 (e)最终合成图片


合成

所有渲染器都生成具有相同大小和深度缓冲的同格式图像。在深度信息的基础上,通过对图像的顺序无关的透明度(order-independent transparency)来合成图像。


部署
在部署阶段,前几个阶段创建的可视化被放置在合适的软件环境中,这样它就可以交付给最终用户.最终用户。


二.总结

这篇论文并没有提出全新的算法,重点在于系统实现,在于将可视化技术用于跨领域合作.

如有感兴趣可以参看论文原文.
展开阅读全文

没有更多推荐了,返回首页