基于django+vue+Vue人脸识别签到系统【开题报告+程序+论文】-计算机毕设

本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。

系统程序文件列表

开题报告内容

选题背景 人脸识别技术近年来取得了显著的进步,已经成为计算机视觉领域的一个热点。随着硬件与软件技术的发展,计算机视觉识别逐渐成为软件行业的热门技术,其中人脸识别作为最普遍、热门的应用技术受到了众多机构的关注。目前,国内外多家厂商和科研机构推出了比较成熟的商用系统或解决方案,但这些商用的解决方案授权费用普遍较高,同时由于其只提供服务,源代码不开源,很难对其进行灵活的定制化改动。因此,基于开源原则,通过使用OpenCV的视觉识别库,对人脸特征进行训练,获得相应的人脸特征分类器,制作出人脸识别引擎,并与QtCreator等开发工具结合,构建一个校园人脸识别签到系统的需求日益增长。 选题意义 本选题的研究具有重要的理论意义和现实意义。理论意义在于,通过对人脸识别技术在签到系统中的应用进行深入研究,可以推动计算机视觉和人工智能技术的发展,为相关领域的研究提供新的视角和方法。现实意义则体现在,人脸识别签到系统的实际应用可以提高签到效率,减少人工成本,增强安全性,尤其在学校、企业等场景中具有广泛的应用前景。 研究方法 本研究将采用软件工程方法、文献分析法、研究项目分析法、问卷调查法、信息分析法、对比分析法、小组讨论、功能分析法、实验法、经验总结法、案例研究法、系统科学方法、实验研究法、调查法、观察法、参考法、实践研究法等多种研究方法。首先,通过文献分析法了解人脸识别技术的最新进展和研究现状;其次,采用软件工程方法进行系统设计和开发;最后,通过实验法和问卷调查法验证系统的性能和用户体验。 研究方案 在研究过程中,可能会遇到以下几个困难和问题:一是如何选择合适的人脸识别算法和技术;二是如何确保系统的准确性和稳定性;三是如何处理大量的用户数据。为了解决这些问题,我们将采取以下措施:一是通过对比分析不同的人脸识别算法,选择最适合本系统的算法;二是进行大量的实验测试,优化系统参数,提高系统的准确性和稳定性;三是采用安全可靠的数据存储和管理方案,保护用户隐私。 研究内容 本研究将围绕校园人脸识别签到系统的设计与开发展开,主要包括以下几个方面的内容: 1. 系统架构设计:设计系统的整体架构,包括前端界面、后端服务和数据库等组成部分。 2. 人脸识别模块:选择合适的人脸识别算法,使用OpenCV等开源库进行人脸检测和特征提取。 3. 用户管理模块:实现学生信息的录入、管理和查询功能。 4. 签到管理模块:实现学生的签到、请假、销假、外出等功能。 5. 数据分析模块:对签到数据进行统计和分析,生成报表和图表。 6. 系统测试与优化:通过实验法和问卷调查法对系统进行测试,收集用户反馈,不断优化系统性能。 拟解决的主要问题 本选题拟解决的主要问题是:如何利用人脸识别技术实现高效、安全的签到系统?通过本研究,我们希望能够找到一种有效的解决方案,既能满足学校等机构对签到管理的需求,又能保证系统的准确性和稳定性。 预期成果 预期成果包括: 1. 完整的校园人脸识别签到系统:一个集成了人脸识别技术的签到系统,能够实现学生的信息管理、签到、请假、销假等功能。 2. 技术报告:详细记录研究过程中的技术细节、实验结果和优化方案。 3. 论文:总结研究成果,发表在相关学术期刊或会议上。

进度安排:

2023年12月: 查看相关资料、技术,准备技术文档,做好需求分析;下发任务书;

2024年01月: 撰写开题报告,并制定软件开发计划,初步设计软件功能架构;

2024年02月: 根据需求分析,进行详细设计;初步设计软件部分功能,完成开题报告;

2024年03月: 对软件前,后台系统功能进行开发,完成软件各个功能模块,撰写论文初稿;

2024年04月:进行系统测试、论文初稿完成、和指导教师沟通,上交初稿,查重,中期检查;

2024年05月:修改论文,完成定稿,软件功能全部实现、测试、界面美化,上交论文资料,参加答辩。

参考文献:

[1]   Hamed Tahmooresi, A. Heydarnoori et al. "An Analysis of Python's Topics, Trends, and Technologies Through Mining Stack Overflow Discussions." arXiv.org (2020).

[2]   韩文煜. "基于python数据分析技术的数据整理与分析研究"[J]. 科技创新与应用, 2020, No.296(04): 157-158.

[3]   Sebastian Bassi. "A Primer on Python for Life Science Researchers." PLoS Comput. Biol. (2007).

[4]   Roseline Bilina and S. Lawford. "Python for Unified Research in Econometrics and Statistics." (2009). 558 591.

[5]   程俊英. "基于Python语言的数据分析处理研究"[J]. 电子技术与软件工程, 2022, No.233(15): 236-239.

[6]   曾浩. "基于Python的Web开发框架研究"[J]. 广西轻工业, 2011, 27(08): 124-125+176.

[7]   Fabian Pedregosa, G. Varoquaux et al. "Scikit-learn: Machine Learning in Python." Journal of machine learning research(2011).

[8]   陈佳佳, 邱晓荣, 熊宇昊, 段莉华. "基于Python的人脸识别技术研究"[J]. 电脑知识与技术, 2023, 19 (08): 34-36+39.

[9]   阿不都艾尼·阿不都肉素力. "Python的计算机软件应用技术分析"[J]. 电脑编程技巧与维护, 2021, No.435(09): 29-30+58.

[10] 张楠. "Python语言及其应用领域研究"[J]. 科技创新导报, 2019, 16(17): 122-123.

[11] 王雄伟, 侯海珍. "大数据专业Python程序设计课程建设探究"[J]. 知识窗(教师版), 2023, (10): 117-119.

[12] 朱向阳. "高中信息技术python项目式教学路径分析"[J]. 高考, 2023, (24): 126-128.

以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!

系统技术栈:

前端:Vue.jsHTMLCSSJavaScript后端技术栈

后端:Python 3.7.7Django MySQL5.7

开发工具:PyCharm社区版、Navicat 11以上版本

系统开发流程:

•   使用HTML、CSS和JavaScript结合Vue.js构建前端界面。

•   使用Python语言结合Django框架开发RESTful API。

•   利用MySQL数据库进行数据存储和查询。

•   通过PyCharm IDE进行代码编写、调试和项目管理。

毕设使用者指南

系统概览

本系统是一个基于现代Web技术构建的应用程序,旨在为用户提供一个交互性强、响应快速的用户体验。系统前端采用Vue.js框架,后端使用Python语言结合Django框架,并以MySQL作为数据存储解决方案。

前端使用指南

1.界面导航

  • 主页:展示系统的主要功能和概览信息。
  • 功能页面:根据需要,用户可以访问不同的功能页面,如用户管理、数据分析等。

2. 交互操作

  • 使用HTMLCSS构建的界面元素,如按钮、链接、表单等,用户可以点击或输入信息进行操作。
  • 利用JavaScriptVue.js实现的动态功能,如实时数据更新、表单验证等,增强用户交互体验。

后端服务指南

1. API使用

  • 系统后端提供RESTful API,用户可以通过HTTP请求与系统进行数据交互。
  • 常见的API操作包括GET(获取数据)、POST(提交数据)、PUT(更新数据)和DELETE(删除数据)。

2. 数据管理

  • 利用MySQL数据库,系统能够安全、高效地存储和管理用户数据。
  • 用户可以通过系统界面或API访问数据库中的数据。

程序界面:

源码、数据库获取↓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值