分布式场景怎么Join?

背景

最近在阅读查询优化器的论文,发现System R中对于Join操作的定义一般分为了两种,即嵌套循环、排序-合并联接。

考虑到我的领域是在处理分库分表或者其他的分区模式,这让我开始不由得联想我们怎么在分布式场景应用这个Join逻辑,对于两个不同库里面的不同表我们是没有办法直接进行Join操作的。查阅资料后发现原来早有定义,即分布式联接算法。

分布式联接算法

跨界点处理数据即分布式联接算法,常见的有四种模型:Shuffle Join(洗牌联接)、Broadcast Join(广播联接)、MapReduce Join(MapReduce联接)、Sort-Merge Join(排序-合并联接)。

接下来将进行逐一了解与分析,以便后续开发的应用。

Shuffle Join(洗牌联接)

先上原理解释:

Shuffle Join的核心思想是将来自不同节点的数据重新分发(洗牌),使得可以联接的数据行最终位于同一个节点上。

通常,对于要联接的两个表,会对联接键应用相同的哈希函数,哈希函数的结果决定了数据行应该被发送到哪个节点。这样,所有具有相同哈希值的行都会被送到同一个节点,然后在该节点上执行联接操作。

可能解释完还是有点模糊,举个例子,有两张表,分别以id字段进行分库操作,且哈希算法相同(为了简单,这里只介绍分库场景,分库分表同理。算法有很多种,这里举例是hash算法),那么这两张表的分片或许可以在同一个物理库中,这样我们不需要做大表维度的处理,我们可以直接下推Join操作到对应的物理库操作即可。

ShardingSphere中,这种场景类似于绑定表的定义,如果两张表的算法相同,可以直接配置绑定表的关系,进行相同算法的连接查询,避免复杂的笛卡尔积。

这样做的好处是可以尽量下推到数据库操作,在中间件层面我们可以做并行处理,适合大规模的数据操作。

但是,这很理想,有多少表会采用相同算法处理呢。

Broadcast Join(广播联接)

先上原理解释:

当一个表的大小相对较小时,可以将这个小表的全部数据广播到所有包含另一个表数据的节点上。

每个节点上都有小表的完整副本,因此可以独立地与本地的大表数据进行联接操作,而不需要跨节点通信。

举个例子,有一张非常小的表A,还有一张按照ID分片的表B,我们可以在每一个物理库中复制一份表A,这样我们的Join操作就可以直接下推到每一个数据库操作了。

这种情况比Shuffle Join甚至还有性能高效,这种类似于ShardingSphere中的广播表的定义,其存在类似于字典表,在每一个数据库都同时存在一份,每次写入会同步到多个节点。

这种操作的好处显而易见,不仅支持并行操作而且性能极佳。

但是缺点也显而易见,如果小表不够小数据冗余不说,广播可能会消耗大量的网络带宽和资源。

MapReduce Join(MapReduce联接)

先上原理解释:

MapReduce是一种编程模型,用于处理和生成大数据集,其中的联接操作可以分为两个阶段:Map阶段和Reduce阶段。

Map阶段:
  • 每个节点读取其数据分片,并对需要联接的键值对应用一个映射函数,生成中间键值对。

Reduce阶段:
  • 中间键值对会根据键进行排序(在某些实现中排序发生在Shuffle阶段)和分组,然后发送到Reduce节点。

  • 在Reduce节点上,具有相同键的所有值都会聚集在一起,这时就可以执行联接操作。

MapReduce Join不直接应用于传统数据库逻辑,而是适用于Hadoop这样的分布式处理系统中。但是为了方便理解,还是用SQL语言来分析,例如一条SQL:

SELECT orders.order_id, orders.date, customers.name
FROM orders
JOIN customers ON orders.customer_id = customers.customer_id;

会被转换为两个SQL:

SELECT customer_id, order_id, date FROM orders;
SELECT customer_id, name FROM customers;

这个过程就是Map阶段,即读取orders和customers表的数据,并为每条记录输出键值对,键是customer_id,值是记录的其余部分。

下一个阶段可有可无,即Shuffle阶段。如果不在这里排序可能会在Map阶段执行SQL时候排序/分组或者在接下来的Reduce阶段进行额外排序/分组。在这个阶段主要将收集到的数据按照customer_id排序分组,以确保相同的customer_id的数据达到Reduce阶段。

Reduce阶段将每个对应的customer_id进行联接操作,输出并返回最后的结果。

这种操作普遍应用于两个算法完全不相同的表单,也是一种标准的处理模型,在这个过程中,我们以一张逻辑表的维度进行操作。这种算法可能会消耗大量内存,甚至导致内存溢出,并且在处理大数据量时会相当耗时,因此不适合需要低延迟的场景。

额外补充

内存溢出场景普遍在如下场景:

  • 大键值对数量: 如果Map阶段产生了大量的键值对,这些数据需要在内存中进行缓存以进行排序和传输,这可能会消耗大量内存。

  • 数据倾斜: 如果某个键非常常见,而其他键则不那么常见,那么处理这个键的Reducer可能会接收到大量的数据,导致内存不足。这种现象称为数据倾斜。

  • 大值列表: 在Reduce阶段,如果某个键对应的值列表非常长,处理这些值可能会需要很多内存。

  • 不合理的并行度: 如果Reduce任务的数量设置得不合适(太少或太多),可能会导致单个任务处理不均匀,从而导致内存问题。

我能想到的相应解决方案:

  • 内存到磁盘的溢写:当Map任务的输出缓冲区满了,它会将数据溢写到磁盘。这有助于限制内存使用,但会增加I/O开销。

  • 通过设置合适的Map和Reduce任务数量,可以更有效地分配资源,避免某些任务过载。具体操作可以将Map操作的分段比如1~100,100~200,Reduce阶段开设较少的并发处理。

  • 优化数据分布,比如使用范围分区(range partitioning)或哈希分区(hash partitioning)来减少数据倾斜。

Sort-Merge Join(排序-合并联接)

先上原理解释:

在分布式环境中,Sort-Merge Join首先在每个节点上对数据进行局部排序,然后将排序后的数据合并起来,最后在合并的数据上执行联接操作。

这通常涉及到多阶段处理,包括局部排序、数据洗牌(重新分发),以及最终的排序和合并。

举个理解,还是上面的SQL。

SELECT orders.order_id, orders.date, customers.name
FROM orders
JOIN customers ON orders.customer_id = customers.customer_id;
  • 对orders表按customer_id进行排序。

  • 对customers表按customer_id进行排序。

  • 同时遍历两个已排序的表,将具有相同customer_id的行配对。

这个就有点类似于原生的排序-合并联接了。也是数据库场景的标准处理办法。

对于已经排序的数据集或数据分布均匀的情况,这种方法非常有效。如果数据未预先排序,这种方法可能会非常慢,因为它要求数据在联接之前进行排序。

当然,这个算法也会造成内存溢出的场景,解决方案如下:

  • 当数据集太大而无法一次性加载到内存中时,可以使用外部排序算法。外部排序算法会将数据分割成多个批次,每个批次单独排序,然后将排序后的批次合并。这种方法通常涉及到磁盘I/O操作,因此会比内存中操作慢。

  • 对于合并步骤,可以使用流式处理技术,一次只处理数据的一小部分,并持续将结果输出到下一个处理步骤或存储系统。这样可以避免一次性加载大量数据到内存中。

  • 当内存不足以处理数据时,可以使用磁盘空间作为临时存储。数据库管理系统通常有机制来处理内存溢出,比如创建磁盘上的临时文件来存储过程中的数据。

  • 在分布式系统中,可以将数据分散到多个节点上进行处理,这样每个节点只需要处理数据的一部分,从而减少单个节点上的内存压力。

来源|blog.csdn.net/weixin_56270372/

article/details/135936319

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数据库表概要设计 数据库表概要设计 vc 端符合直觉,m 端追求快速(TDD BDD) 长期... 【缩写】 我们规定 类似 bq = blockquote cT = create_time uT = update_time id = ${entity}_id 【约定⼤于配置】 create_time update_time 是没有打⽇志情况最后⼀根稻草 `create_time` timestamp not null default current_timestamp comment '创建时间', `update_time` timestamp not null default current_timestamp on update current_timestamp comment '修改时间', 【概要设计规定】 1. constraint 约束先忽略 not null ⾃增 auto_increment 2. 类型先忽略 int varchar timestamp 3. 数据字典 先忽略 comment 4. 默认值 DEFAULT 先忽略 5. 违反第三范式 适当数据冗余减少join (遵守第⼀范式⼆维表 第⼆范式 context + 主键)    【Java ⼏种实体】就是说我们不⽤外键,让程序去维护⼏个实体的关联。 DTO (data2obj 作为传输实体存在) = (Entity1 + Entity2)(service 业务驱动) XXXForm (表单实体) = 前端表单参数封装( API 驱动 ) VO (作为规定格式实体返回给前端⽽存在) 【⼏个 Key】 primary key foreign key 外键 第三范式 unique key 插⼊数据不重复   => 考虑分布式场景 使⽤mysql⾃带约束限制唯⼀性,如 UNIQUE KEY `user_name_unique` (`username`) USING BTREE key 逻辑层加快查询速度 另外不建议 强制索引   index 物理层 实体表 【product_category】 (id,category_name,catagory_type) & pk(id) 【product_info】(id,product_name,product_price,product_stock,   product_description,product_icon,product_status,category_type) & pk(id) 【order_master】(id,buyer_name,buyer_phone,buyer_address,buyer_openid,   order_status,pay_status) & pk(id) & key(buyer_openid) 【order_detail】(detail_id,order_id,product_id,product_name,product_price,   product_quantity,product_icon)&pk(detail_id)&key(order_id) 【seller_info】(id,username,password,openid) & pk(id) ………………………………………………………………………………………………………… 特殊的表 分类表 【递归层级】 类型 datetime 较⽅便查看创建时间 更新时间 text 富⽂本 decimal(totaLen,preci)
⼤数据场景化解决⽅案 ⼤数据场景化解决⽅案 1.⼤数据的概念 维基百科的定义: ⼤数据是指利⽤常⽤软件⼯具捕获、管理和处理数据所耗时间超过可容忍时间的数据集。 2.⼤数据主流技术 数据采集: 使⽤Flume,可进⾏流式⽇志数据的收集。 使⽤Sqoop可以交互关系型数据库,进⾏导⼊导出数据。 使⽤爬⾍技术,可在⽹上爬取海量⽹页数据。 数据存储与管理: ⼤数据利⽤分布式⽂件系统HDFS、HBase、Hive,实现对结构化、半结构化和⾮结构化数据的存储和管理。 数据处理与分析: 利⽤分布式并⾏编程模型和计算框架,结合机器学习和数据挖掘算法,实现对海量数据的处理和分析。 3.场景化解决⽅案 在⾯对不同的场景时,会使⽤不同的⼤数据组件去解决处理,主要有如下⼤数据场景化解决⽅案。 离线批处理 实时检索 实时流处理 融合数仓 3.1 离线批处理 离线批处理,是指对海量历史数据进处理和分析,⽣成结果数据,供下⼀步数据应⽤使⽤的过程。离线批处理对数据处理的时延要求不 ⾼,但是处理的数据量较⼤,占⽤的计算存储资源较多,通常通过MR作业、Spark作业或者HQL作业实现。 离线批处理的特点: 处理时间要求不⾼ 处理数据量巨⼤ 处理数据格式多样 占⽤计算存储资源多 离线处理常⽤的组件: HDFS:分布式⽂件系统,为各种批处理引擎提供数据存储,可以存储各种⽂件格式数据。 YARN:资源调度引擎,为各种批处理引擎提供资源调度能⼒。 MapReduce:⼤数据批处理引擎,⽤于处理海量数据,但是处理速度较慢。 Hive:⼤数据SQL批处理引擎,⽤于处理SQL类批处理作业,但是处理速度较慢。 Spark:基于内存的数据处理引擎,适合海量数据,处理速度⾼效。 Spark SQL:Spark处理结构化数据的⼀个模块。 HDFS介绍 HDFS(Hadoop Distributed File System)基于Google发布的GFS论⽂设计开发。 其除具备其它分布式⽂件系统相同特性外,HDFS还有⾃⼰ 特有的特性: ⾼容错性:认为硬件总是不可靠的。 ⾼吞吐量:为⼤量数据访问的应⽤提供⾼吞吐量⽀持。 ⼤⽂件存储:⽀持存储TB-PB级别的数据。 HDFS适合:⼤⽂件存储与访问 流式数据访问 HDFS不适合:⼤量⼩⽂件存储 随机写⼊ 低延迟读取 HDFS回收站机制: 在HDFS⾥,删除⽂件时,不会真正的删除,其实是放⼊回收站,回收站⾥的⽂件可以⽤来快速恢复误删⽂件。 可以设置⼀个时间阀值(单位:分钟),当回收站⾥⽂件的存放时间超过这个阀值或是回收站被清空时,⽂件才会被彻底删除,并且 释放占⽤的数据块。 Hadoop回收站trash,默认是关闭的,若开启需要修改配置⽂件core-site.xml。 Hive概述 Hive是基于Hadoop的数据仓库软件,可以查询和管理PB级别的分布式数据。 Hive特性: 灵活⽅便的ETL (Extract/Transform/Load)。 ⽀持MapReduce、Tez、Spark多种计算引擎。 可直接访问HDFS⽂件以及HBase。 易⽤易编程。 Hive函数: 查看系统函数的⽤法:show functions; 显⽰函数的⽤法:desc function upper; 详细显⽰函数的⽤法:desc function extended upper; 当Hive提供的内置函数⽆法满⾜业务处理需要时,此时就可以考虑使⽤⽤户⾃定义函数,编写处理代码并在查询中使⽤。 UDF(User-Defined-Function) ⽤于接收单个数据⾏,并产⽣⼀个数据⾏作为输出。 UDAF(User-Defined Aggregation Function) ⽤于接收多个数据⾏,并产⽣⼀个数据⾏作为输出。 UDTF(User-Defined Table-Generating Functions) ⽤于接收单个数据⾏,并产⽣多个数据⾏作为输出。 Hive调优 数据倾斜 数据倾斜指计算数据的时候,数据的分散度不够,导致⼤量的数据集中到了⼀台或者⼏台机器上计算,这些数据的计算速度远远低于平均 计算速度,导致整个计算过程过慢。 ⽇常使⽤过程中,容易造成数据倾斜的原因可以归纳为如下⼏点: group by distinct count(distinct xx) join 调优参数: 在map中会做部分聚集操作,效率更⾼但需要更多的内存。 set hive.map.aggr=true; 此时⽣成的查询计划会有两个MRJob,可实现数据倾斜时负载均衡。 set hive.groupby.skewindata=true; 当连接⼀个较⼩和较⼤表的时候,把较⼩的表直接放到内存中去,然后再对较⼤的表进⾏map操作。 set hive.auto.convert.join=true

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值