大模型面经——LoRA最全总结

LoRA面经搜集总结。

大家的显卡都比较吃紧,LoRA家族越来越壮大,基于基于LoRA出现了各种各样的改进,最近比较火的一个改进版是dora,听大家反馈口碑也不错。

基于PEFT的话用4090 24G显存也可以进行大模型的微调,所以LoRA家族这块还是很有研究和实际落地的潜力。

LoRA整个系列分为两个部分:

1、LoRA总述

2、LoRA家族演进

本篇开始介绍第一部分:LoRA总述,尽量以面经问题的形式提出并解答,下面是一个快捷目录。

一、概念

\1. 简单介绍一下LoRA

\2. LoRA的思路

\3. LoRA的特点

\4. LoRA的优点

\5. LoRA的缺点

二、训练理论

\1. LoRA权重是否可以合入原模型?

\2. ChatGLM-6B LoRA后的权重多大?

\3. LoRA微调方法为啥能加速训练?

\4. 如何在已有LoRA模型上继续训练?

\5. LoRA这种微调方法和全参数比起来有什么劣势吗?

\6. LORA应该作用于Transformer的哪个参数矩阵?

\7. LoRA 微调参数量怎么确定?

\8. Rank 如何选取?

\9. alpha参数 如何选取?

\10. LoRA 高效微调如何避免过拟合?

\11. 哪些因素会影响内存使用?

\12. LoRA权重是否可以合并?

\13. 是否可以逐层调整LoRA的最优rank?

\14. Lora的矩阵怎么初始化?为什么要初始化为全0?

一、概念

**
**

1. 简单介绍一下LoRA

图片

通过低秩分解来模拟参数的改变量,从而以极小的参数量来实现大模型的间接训练。实现思想很简单,就是冻结一个预训练模型的矩阵参数,并选择用A和B矩阵来替代,在下游任务时只更新A和B。

2. LoRA的思路

主要思想:在原模型旁边增加一个旁路,通过低秩分解(先降维再升维)来模拟参数的更新量。

  • 训练:原模型固定,只训练降维矩阵A和升维矩阵B。
  • 推理:可将BA加到原参数上,不引入额外的推理延迟。
  • 初始化:A采用高斯分布初始化,B初始化为全0,保证训练开始时旁路为0矩阵。
  • 可插拔式的切换任务:当前任务W0+B1A1,将lora部分减掉,换成B2A2,即可实现任务切换。

3. LoRA的特点

  • 将BA加到W上可以消除推理延迟;
  • 可以通过可插拔的形式切换到不同的任务;
  • 设计的比较简单且效果好。

4. LoRA的优点

1)一个中心模型服务多个下游任务,节省参数存储量

2)推理阶段不引入额外计算量

3)与其它参数高效微调方法正交,可有效组合

4)训练任务比较稳定,效果比较好

5)LoRA 几乎不添加任何推理延迟,因为适配器权重可以与基本模型合并

5. LoRA的缺点

LoRA参与训练的模型参数量不多,也就百万到千万级别的参数量,所以效果比全量微调差很多。(数据以及算力满足的情况下,还是微调的参数越多越好)

二、训练理论

1. LoRA权重是否可以合入原模型?

可以,将训练好的低秩矩阵(B*A)+原模型权重合并(相加),计算出新的权重。

2. ChatGLM-6B LoRA后的权重多大?

rank 8 target_module query_key_value条件下,大约15M。

3. LoRA微调方法为啥能加速训练?

1)只更新了部分参数:比如LoRA原论文就选择只更新Self Attention的参数,实际使用时我们还可以选择只更新部分层的参数;

2)减少了通信时间:由于更新的参数量变少了,所以(尤其是多卡训练时)要传输的数据量也变少了,从而减少了传输时间;

3)采用了各种低精度加速技术,如FP16、FP8或者INT8量化等。

这三部分原因确实能加快训练速度,然而它们并不是LoRA所独有的,事实上几乎都有参数高效方法都具有这些特点。LoRA的优点是它的低秩分解很直观,在不少场景下跟全量微调的效果一致,以及在预测阶段不增加推理成本。

4. 如何在已有LoRA模型上继续训练?

理解此问题的情形是:已有的lora模型只训练了一部分数据,要训练另一部分数据的话,是在这个lora上继续训练呢,还是跟base 模型合并后再套一层lora,或者从头开始训练一个lora?

把之前的LoRA跟base model 合并后,继续训练就可以,为了保留之前的知识和能力,训练新的LoRA时,加入一些之前的训练数据是需要的。每次都要重头训练的话成本比较高。

5. LoRA这种微调方法和全参数比起来有什么劣势吗?

图片

如果有足够计算资源以及有10k以上数据,还是建议全参数微调,lora的一个初衷就是为了解决不够计算资源的情况下微调,只引入了少量参数,就可以在消费级gpu上训练,但lora的问题在于它不能节省训练时间,相比于全量微调,他要训练更久,同时因为可训练参数量很小,在同样大量数据训练下,比不过全量微调。

6. LORA应该作用于Transformer的哪个参数矩阵?

在这里插入图片描述

从上图我们可以看到:

1)将所有微调参数都放到attention的某一个参数矩阵的效果并不好,将可微调参数平均分配到 Wq 和 Wk 的效果最好;

2)即使是秩仅取4也能在 ∆W 中获得足够的信息。

因此在实际操作中,应当将可微调参数分配到多种类型权重矩阵中,而不应该用更大的秩单独微调某种类型的权重矩阵。

7. LoRA 微调参数量怎么确定?

LoRA 模型中可训练参数的结果数量取决于低秩更新矩阵的大小,其主要由秩 r 和原始权重矩阵的形状确定。实际使用过程中,通过选择不同的 lora_target 决定训练的参数量。

以 LLama 为例:

–lora_target q_proj,k_proj,v_proj,o_proj,gate_proj,up_proj,down_proj

8. Rank 如何选取?

Rank的取值比较常见的是8,理论上说Rank在4-8之间效果最好,再高并没有效果提升。不过论文的实验是面向下游单一监督任务的,因此在指令微调上根据指令分布的广度,Rank选择还是需要在8以上的取值进行测试。

9. alpha参数 如何选取?

alpha其实是个缩放参数,本质和learning rate相同,所以为了简化可以默认让alpha=rank,只调整lr,这样可以简化超参。

10. LoRA 高效微调如何避免过拟合?

过拟合还是比较容易出现的。减小r或增加数据集大小可以帮助减少过拟合,还可以尝试增加优化器的权重衰减率或LoRA层的dropout值。

11. 哪些因素会影响内存使用?

内存使用受到模型大小、批量大小、LoRA参数数量以及数据集特性的影响。例如,使用较短的训练序列可以节省内存。

12. LoRA权重是否可以合并?

可以将多套LoRA权重合并。训练中保持LoRA权重独立,并在前向传播时添加,训练后可以合并权重以简化操作。

13. 是否可以逐层调整LoRA的最优rank?

理论上,可以为不同层选择不同的LoRA rank,类似于为不同层设定不同学习率,但由于增加了调优复杂性,实际中很少执行。

14. Lora的矩阵怎么初始化?为什么要初始化为全0?

矩阵B被初始化为0,而矩阵A正常高斯初始化。

如果B,A全都初始化为0,那么缺点与深度网络全0初始化一样,很容易导致梯度消失(因为此时初始所有神经元的功能都是等价的)。

如果B,A全部高斯初始化,那么在网络训练刚开始就会有概率为得到一个过大的偏移值Δ W 从而引入太多噪声,导致难以收敛。

因此,一部分初始为0,一部分正常初始化是为了在训练开始时维持网络的原有输出(初始偏移为0),但同时也保证在真正开始学习后能够更好的收敛。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
  • 10
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值