【开源】Dify+RAGFlow强强联合:知识库精准度飙升,PDF表格秒变结构化数据!

整合优势

\1. 深度网页解析能力

RAGFlow可解析PDF、扫描件、表格等复杂格式,自动识别布局并提取结构化数据,弥补Dify原生解析短板。

\2. 检索质量飞跃

通过多路召回、重排序优化策略,RAGFlow显著提升答案准确性。例如,扫描版PDF表格的解析完整度提升40%以上。

\3. 混合检索模式

Dify支持向量检索、全文检索、混合检索(推荐),结合RAGFlow的API调用,实现“非结构化数据+语义匹配”的双重优势。

img

配置步骤(简化版)

\1. 部署RAGFlow

- 克隆源码并启动Docker容器(需CPU≥4核、内存≥16GB)。

- 记录RAGFlow的API地址(如http://IP:9380)和API Key。

img

在控制台执行docker-compose up -d

img

\2. Dify配置

- 修改.env文件启用自定义模型,并填入Ollama API地址。

- 在Dify“外部知识库”中填写RAGFlow的API Endpoint、Key及知识库ID。

\3. 效果验证

上传测试网页(如扫描版合同、复杂表格),对比RAGFlow原生检索与Dify整合后的结果,后者在数据完整性和逻辑性上更优。

点击右上角头像,下拉框中可以看到已经成功升级到v1.0.1了

img

img

注意事项

- 硬件要求:确保服务器满足资源门槛(CPU/内存/存储)。

- 接口兼容性:RAGFlow的9380端口需开放,且API Key权限需包含知识库访问。

首先,我们需要解决一个端口冲突的问题。在本地环境中,ragflow和dify的默认访问端口均为80和443,这会导致其中一个服务无法正常启动。为了解决这个问题,我建议修改ragflow的默认端口。以下是修改方法:在docker-compose.yml文件中,将ragflow的端口映射进行更改,将容器的80端口映射到主机的8000端口,将443端口映射到主机的4333端口。这样一来,ragflow与dify的端口就不会发生冲突了。

img

- 模型适配:建议关闭Dify的Rerank模型,优先信任RAGFlow的解析结果。

场景价值

适用于法律、金融、医疗等需处理大量非结构化网页的行业,例如:

- 快速提取合同条款中的关键信息;

- 结构化存储医疗影像报告与诊断记录;

- 实时解析企业年报中的财务数据。

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### Dify 文档提取器处理 Excel 文件的解决方案 当前遇到的问题在于 Dify 文档提取器默认情况下可能不具备直接解析和提取 Excel 文件内容的能力。为了克服这一局限性,可以考虑采用以下几种方法: #### 方法一:转换文件格式 将 Excel 文件预先转换为其他受支持的格式再进行上传。例如,可先将 `.xlsx` 或 `.xls` 转换成 PDF 格式,之后利用已有的 RAG Pipeline 功能来读取并索引这些文档中的文本信息[^2]。 ```bash # 使用命令行工具如 LibreOffice 进行批量转换 libreoffice --headless --convert-to pdf *.xlsx ``` #### 方法二:集成第三方库或服务 引入专门用于处理电子表格的应用程序接口(API),像 Pandas 库或者 Google Sheets API 等,它们能够有效地加载、分析以及导出 Excel 数据表的内容。这样可以在预处理阶段获取所需的数据字段,并将其作为结构化数据输入给 Dify 工作流。 ```python import pandas as pd # 加载 Excel 文件 df = pd.read_excel('example.xlsx') # 将 DataFrame 中的数据转成 JSON 字符串形式以便后续处理 json_data = df.to_json(orient='records') print(json_data) ``` #### 方法三:增强现有架构功能 如果条件允许的话,还可以尝试扩展现有的 Dify + DeepSeek 架构,在本地环境中加入额外的支持模块以实现对 Excel 的原生支持。这不仅提高了系统的兼容性和实用性,同时也增强了对于敏感资料的安全防护措施[^3]。 通过上述任一种方式都可以有效改善 Dify 对于 Excel 文件的操作能力,确保各类办公自动化流程顺利开展的同时也保护好用户的隐私权与数据主权[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值