第一章:SpringAI 核心概念与生态介绍

部署运行你感兴趣的模型镜像

专栏内容导航:

章节名称链接
第一章:SpringAI 核心概念与生态介绍https://blog.csdn.net/zhiyikeji/article/details/151833759?spm=1001.2014.3001.5501
第二章:SpringAI快速接入DeepSeek创作中…

1.什么是 SpringAI?

​​SpringAI​​ 是 Spring 官方推出的一个面向 AI 工程的应用框架,其核心使命是将 ​​Spring 生态系统的设计原则​​(如可移植性、模块化)扩展至人工智能领域。它旨在简化包含人工智能功能的应用程序的开发,让 Java 开发者能够以熟悉的 Spring 开发范式(例如使用 POJOs、依赖注入)来集成和利用各种 AI 能力,而无需过度关注底层集成的复杂性。

简单来说,​​SpringAI 是一个 AI 整合工具​​。就像 Spring Boot 通过自动配置和 Starter 简化了传统应用的开发一样,SpringAI 为 Java 开发者提供了调用大语言模型 (LLM) 和其他 AI 服务的统一抽象和便捷方式,让你能更专注于业务逻辑而非底层 API 调用的细节。

2 SpringAI 的核心功能

SpringAI 的设计遵循了 Spring 家族一贯的 “抽象” 和 “依赖倒置” 原则,并提供了一系列功能来支持多种 AI 应用场景

功能类别说明典型应用场景
统一的 API 抽象​​提供 ChatClient, EmbeddingModel, ImageModel等统一接口,屏蔽不同厂商 API 差异。轻松切换不同的 AI 服务提供商,代码改动最小化。
​文本生成与对话​​支持多轮对话、上下文管理、角色扮演等高级对话功能。轻智能客服、代码助手、内容创作、对话机器人
检索增强生成 (RAG)​​​​集成了主流向量数据库(如 Chroma, Pinecone, Redis, PGvector 等),结合 ETL 文档处理流程,实现知识库问答和文档检索。智能文档检索、知识库问答、基于企业内部知识的精准回答。
​​文生图 (Text-to-Image)​​​​​​支持多种文生图模型(如 OpenAI DALL·E, Stable Diffusion),并可定制图片风格、分辨率等参数。电商、广告、创意设计等行业的图片生成
​​语音合成与识别​​​​​​​​支持 TTS (文本转语音) 和 ASR (自动语音识别),提供多种发音人、语速和情感参数定制。语音助手、有声内容创作、会议记录转写。
​​语言翻译​​​​集成多家云厂商的翻译 API,实现多语种互译,并支持自动检测源语言。跨境电商、国际化产品、多语言内容处理
​​Tool / Function Calling​​​​支持模型发起函数调用,能够注册 Spring Bean 作为可调用工具,从而访问实时业务系统或执行外部操作。查询实时数据(如订单状态)、执行计算、操作外部系统。
​​流式输出与异步处理​​​​支持流式响应 (streaming) 和异步任务处理。提升聊天体验(答案逐字输出)、处理大规模并发请求
​​可观测性与评估​​​​内置对 AI 调用的监控指标、日志和模型评估工具,有助于检测响应准确性和防止“幻觉”。监控 AI 服务健康状况、评估模型效果、分析使用情况。

3.核心概念

要使用 SpringAI,首先需要理解以下几个最基本的核心模型对象,它们构成了大部分交互的基础。

3.1.Prompt(提示)

Prompt 类是模型输入的载体。它包含一个或多个 Message 对象,代表了一次请求的完整提示信息。

Prompt prompt = new Prompt(List.of(new SystemMessage("你是一个有帮助的助手"), new UserMessage("你好,你是谁?")));

3.2 Message(消息)

Message 是一个接口,代表对话中的一条消息。它有多个实现,用于区分不同角色的消息,这对于多轮对话至关重要:

  • SystemMessage:系统消息,用于设定 AI 的角色、背景或行为指令。
  • UserMessage:用户发送的消息。
  • AssistantMessage:AI 助手之前的回复消息。
  • FunctionMessage / ToolMessage:与函数调用(Function Calling)或工具调用相关。

3.3 Chat Response(聊天响应)

当你向模型发送一个 Prompt 后,会收到一个 ChatResponse 作为返回结果。它包含了 AI 的回复以及其他元信息。

  • getResult(): 获取主要的回复内容,通常是一个 AssistantMessage。
  • getMetadata(): 获取本次请求的元数据,如令牌使用情况、模型名称等。

3.4 Output Parsing(输出解析)

AI 模型的原始输出是文本。OutputParser 接口负责将这段文本转换成你期望的、结构化的 Java 对象。

  • StringOutputParser: 直接返回字符串。
  • BeanOutputParser: 将 AI 的输出解析为一个指定的 Java Bean 对象。
  • ListOutputParser: 解析为列表。
  • 自定义解析器:你可以实现 OutputParser 接口来满足任何复杂的解析需求。

示例:让 AI 返回一个 JSON 格式的字符串,并用 BeanOutputParser 将其自动反序列化成 Person 对象。

4.主要组件与 API

SpringAI 通过一系列 Client 来提供不同方面的 AI 能力。

1.ChatClient

  • 最核心、最常用的客户端,用于处理文本对话。
  • 方法:String call(String message) (简易版)或 ChatResponse call(Prompt prompt) (完整版)。
  • 用于:普通的问答、多轮对话、基于提示词的文本生成等。

2.EmbeddingClient

  • 用于处理文本嵌入(Embeddings),将文本转换为高维向量。
  • 方法:List embed(String text) 或 List embed(Document document)。
  • 用于:构建 RAG(检索增强生成)应用。先将文档库向量化并存入向量数据库,查询时先检索相关文档片段,再交给 ChatClient 生成答案。

3.ImageClient

  • 用于生成图片。
  • 方法:ImageResponse call(ImagePrompt prompt)。
  • 用于:根据文本描述(Prompt)生成图片。

4.Audio Clients (Speech & Transcription)

  • 用于语音合成(文本转语音)和语音识别(语音转文本)。
  • SpeechClient: byte[] generate(SpeechPrompt prompt) 生成音频。
  • TranscriptionClient: Transcription transcribe(AudioResource audioResource) 识别音频。

5.Vector Stores(向量数据库)

  • 这不是一个 Client,而是一个重要的抽象。它定义了与向量数据库交互的通用接口,如插入、搜索。
  • 支持多种后端:Chroma, Pinecone, Redis, PGVector, Weaviate, Qdrant, Azure Vector Search 等。
  • 与 EmbeddingClient 和 ChatClient 结合,是构建 RAG 应用的基石。

5.项目生态与支持

SpringAI 的强大之处在于其背后繁荣的生态支持。

5.1 支持的模型提供商(Model Providers)

SpringAI 通过 starter 包的形式提供了对众多主流AI平台的支持,只需引入对应的依赖并配置 API Key 即可使用。

  • OpenAI: 最主流的支持,包括 GPT-4, GPT-3.5-Turbo, DALL-E, TTS。
  • Azure OpenAI: 微软 Azure 上的 OpenAI 服务。
  • Anthropic Claude (Amazon Bedrock & 官方 API)
  • Google Vertex AI / Gemini
  • Cohere
  • Hugging Face (Inference API)
  • Mistral AI
  • Ollama (用于本地运行开源模型,如 Llama2, Mistral, Gemma)
  • Amazon Bedrock (统一访问多种模型,如 Anthropic Claude, AI21 Labs, Cohere, Stability AI)
  • 阿里通义千问

5.2 支持的向量数据库(Vector Stores)

为 RAG 应用提供数据持久化和检索能力。

  • 简单/本地:SimpleVectorStore (内存,不持久化), Chroma, Redis
  • 生产级:Pinecone, Weaviate, Qdrant, PGVector (PostgreSQL 扩展), Azure Vector Search, Milvus

5.3 数据 ETL 与文档加载

为了便于构建 RAG,SpringAI 提供了 DocumentReader 和 Transformers 来从各种数据源加载和预处理文档。

  • 支持从 TXT, PDF, PPT, Word, Markdown, JSON, HTML 等文件中提取文本。
  • 支持分块(Text Splitters)、清洗等操作。

5.4 评估框架(Evaluation)

提供了对提示词(Prompt)和模型响应进行评估的初步框架,帮助开发者迭代和优化 AI 应用。

5.5 与 Spring 生态无缝集成

  • Spring Boot: 自动配置,开箱即用。
  • Spring Security: 可能在未来集成安全性和权限控制。
  • Spring Data: 与向量数据库的交互模式类似。
  • Spring Actuator: 提供监控端点,查看 AI 相关的健康状态和指标。

您可能感兴趣的与本文相关的镜像

ComfyUI

ComfyUI

AI应用
ComfyUI

ComfyUI是一款易于上手的工作流设计工具,具有以下特点:基于工作流节点设计,可视化工作流搭建,快速切换工作流,对显存占用小,速度快,支持多种插件,如ADetailer、Controlnet和AnimateDIFF等

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZNineSun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值