专栏内容导航:
| 章节名称 | 链接 |
|---|---|
| 第一章:SpringAI 核心概念与生态介绍 | https://blog.csdn.net/zhiyikeji/article/details/151833759?spm=1001.2014.3001.5501 |
| 第二章:SpringAI快速接入DeepSeek | 创作中… |
文章目录
1.什么是 SpringAI?
SpringAI 是 Spring 官方推出的一个面向 AI 工程的应用框架,其核心使命是将 Spring 生态系统的设计原则(如可移植性、模块化)扩展至人工智能领域。它旨在简化包含人工智能功能的应用程序的开发,让 Java 开发者能够以熟悉的 Spring 开发范式(例如使用 POJOs、依赖注入)来集成和利用各种 AI 能力,而无需过度关注底层集成的复杂性。
简单来说,SpringAI 是一个 AI 整合工具。就像 Spring Boot 通过自动配置和 Starter 简化了传统应用的开发一样,SpringAI 为 Java 开发者提供了调用大语言模型 (LLM) 和其他 AI 服务的统一抽象和便捷方式,让你能更专注于业务逻辑而非底层 API 调用的细节。
2 SpringAI 的核心功能
SpringAI 的设计遵循了 Spring 家族一贯的 “抽象” 和 “依赖倒置” 原则,并提供了一系列功能来支持多种 AI 应用场景
| 功能类别 | 说明 | 典型应用场景 |
|---|---|---|
| 统一的 API 抽象 | 提供 ChatClient, EmbeddingModel, ImageModel等统一接口,屏蔽不同厂商 API 差异。 | 轻松切换不同的 AI 服务提供商,代码改动最小化。 |
| 文本生成与对话 | 支持多轮对话、上下文管理、角色扮演等高级对话功能。 | 轻智能客服、代码助手、内容创作、对话机器人 |
| 检索增强生成 (RAG) | 集成了主流向量数据库(如 Chroma, Pinecone, Redis, PGvector 等),结合 ETL 文档处理流程,实现知识库问答和文档检索。 | 智能文档检索、知识库问答、基于企业内部知识的精准回答。 |
| 文生图 (Text-to-Image) | 支持多种文生图模型(如 OpenAI DALL·E, Stable Diffusion),并可定制图片风格、分辨率等参数。 | 电商、广告、创意设计等行业的图片生成 |
| 语音合成与识别 | 支持 TTS (文本转语音) 和 ASR (自动语音识别),提供多种发音人、语速和情感参数定制。 | 语音助手、有声内容创作、会议记录转写。 |
| 语言翻译 | 集成多家云厂商的翻译 API,实现多语种互译,并支持自动检测源语言。 | 跨境电商、国际化产品、多语言内容处理 |
| Tool / Function Calling | 支持模型发起函数调用,能够注册 Spring Bean 作为可调用工具,从而访问实时业务系统或执行外部操作。 | 查询实时数据(如订单状态)、执行计算、操作外部系统。 |
| 流式输出与异步处理 | 支持流式响应 (streaming) 和异步任务处理。 | 提升聊天体验(答案逐字输出)、处理大规模并发请求 |
| 可观测性与评估 | 内置对 AI 调用的监控指标、日志和模型评估工具,有助于检测响应准确性和防止“幻觉”。 | 监控 AI 服务健康状况、评估模型效果、分析使用情况。 |
3.核心概念
要使用 SpringAI,首先需要理解以下几个最基本的核心模型对象,它们构成了大部分交互的基础。
3.1.Prompt(提示)
Prompt 类是模型输入的载体。它包含一个或多个 Message 对象,代表了一次请求的完整提示信息。
Prompt prompt = new Prompt(List.of(new SystemMessage("你是一个有帮助的助手"), new UserMessage("你好,你是谁?")));
3.2 Message(消息)
Message 是一个接口,代表对话中的一条消息。它有多个实现,用于区分不同角色的消息,这对于多轮对话至关重要:
- SystemMessage:系统消息,用于设定 AI 的角色、背景或行为指令。
- UserMessage:用户发送的消息。
- AssistantMessage:AI 助手之前的回复消息。
- FunctionMessage / ToolMessage:与函数调用(Function Calling)或工具调用相关。
3.3 Chat Response(聊天响应)
当你向模型发送一个 Prompt 后,会收到一个 ChatResponse 作为返回结果。它包含了 AI 的回复以及其他元信息。
- getResult(): 获取主要的回复内容,通常是一个 AssistantMessage。
- getMetadata(): 获取本次请求的元数据,如令牌使用情况、模型名称等。
3.4 Output Parsing(输出解析)
AI 模型的原始输出是文本。OutputParser 接口负责将这段文本转换成你期望的、结构化的 Java 对象。
- StringOutputParser: 直接返回字符串。
- BeanOutputParser: 将 AI 的输出解析为一个指定的 Java Bean 对象。
- ListOutputParser: 解析为列表。
- 自定义解析器:你可以实现 OutputParser 接口来满足任何复杂的解析需求。
示例:让 AI 返回一个 JSON 格式的字符串,并用 BeanOutputParser 将其自动反序列化成 Person 对象。
4.主要组件与 API
SpringAI 通过一系列 Client 来提供不同方面的 AI 能力。
1.ChatClient
- 最核心、最常用的客户端,用于处理文本对话。
- 方法:String call(String message) (简易版)或 ChatResponse call(Prompt prompt) (完整版)。
- 用于:普通的问答、多轮对话、基于提示词的文本生成等。
2.EmbeddingClient
- 用于处理文本嵌入(Embeddings),将文本转换为高维向量。
- 方法:List embed(String text) 或 List embed(Document document)。
- 用于:构建 RAG(检索增强生成)应用。先将文档库向量化并存入向量数据库,查询时先检索相关文档片段,再交给 ChatClient 生成答案。
3.ImageClient
- 用于生成图片。
- 方法:ImageResponse call(ImagePrompt prompt)。
- 用于:根据文本描述(Prompt)生成图片。
4.Audio Clients (Speech & Transcription)
- 用于语音合成(文本转语音)和语音识别(语音转文本)。
- SpeechClient: byte[] generate(SpeechPrompt prompt) 生成音频。
- TranscriptionClient: Transcription transcribe(AudioResource audioResource) 识别音频。
5.Vector Stores(向量数据库)
- 这不是一个 Client,而是一个重要的抽象。它定义了与向量数据库交互的通用接口,如插入、搜索。
- 支持多种后端:Chroma, Pinecone, Redis, PGVector, Weaviate, Qdrant, Azure Vector Search 等。
- 与 EmbeddingClient 和 ChatClient 结合,是构建 RAG 应用的基石。
5.项目生态与支持
SpringAI 的强大之处在于其背后繁荣的生态支持。
5.1 支持的模型提供商(Model Providers)
SpringAI 通过 starter 包的形式提供了对众多主流AI平台的支持,只需引入对应的依赖并配置 API Key 即可使用。
- OpenAI: 最主流的支持,包括 GPT-4, GPT-3.5-Turbo, DALL-E, TTS。
- Azure OpenAI: 微软 Azure 上的 OpenAI 服务。
- Anthropic Claude (Amazon Bedrock & 官方 API)
- Google Vertex AI / Gemini
- Cohere
- Hugging Face (Inference API)
- Mistral AI
- Ollama (用于本地运行开源模型,如 Llama2, Mistral, Gemma)
- Amazon Bedrock (统一访问多种模型,如 Anthropic Claude, AI21 Labs, Cohere, Stability AI)
- 阿里通义千问
5.2 支持的向量数据库(Vector Stores)
为 RAG 应用提供数据持久化和检索能力。
- 简单/本地:SimpleVectorStore (内存,不持久化), Chroma, Redis
- 生产级:Pinecone, Weaviate, Qdrant, PGVector (PostgreSQL 扩展), Azure Vector Search, Milvus
5.3 数据 ETL 与文档加载
为了便于构建 RAG,SpringAI 提供了 DocumentReader 和 Transformers 来从各种数据源加载和预处理文档。
- 支持从 TXT, PDF, PPT, Word, Markdown, JSON, HTML 等文件中提取文本。
- 支持分块(Text Splitters)、清洗等操作。
5.4 评估框架(Evaluation)
提供了对提示词(Prompt)和模型响应进行评估的初步框架,帮助开发者迭代和优化 AI 应用。
5.5 与 Spring 生态无缝集成
- Spring Boot: 自动配置,开箱即用。
- Spring Security: 可能在未来集成安全性和权限控制。
- Spring Data: 与向量数据库的交互模式类似。
- Spring Actuator: 提供监控端点,查看 AI 相关的健康状态和指标。
94

被折叠的 条评论
为什么被折叠?



