leetcode:566. 重塑矩阵

本文深入解析了矩阵重塑算法,探讨了如何在不使用额外空间的情况下,根据给定的行数和列数重新构造矩阵。文章提供了Java和C++实现代码,介绍了通过循环填充、除法取模以及使用队列等不同方法实现矩阵重塑的过程。
摘要由CSDN通过智能技术生成

题目来源

LEETCODE

题目描述

在这里插入图片描述

题目解析

  • 判断是否重构矩阵: r * c == 原始元素个数

不使用额外空间

循环填充即可

  • java
            if (nums.length * nums[0].length != r * c){
                return nums;
            }
            
            int[][] ans = new int[r][c];
            int row = 0;
            int line = 0;
            for (int i = 0; i < nums.length; i++){
                for (int j = 0; j < nums[i].length; j++){
                    ans[row][line] = nums[i][j];
                    line++;
                    if (line == c){
                        row++;
                        line = 0;
                    }
                }
            }

            return ans;

在这里插入图片描述

  • cpp
vector<vector<int>> matrixReshape(vector<vector<int>>& mat, int r, int c) {
    if(r * c != mat.size() * mat[0].size()){
        return mat;
    }
    
    int row = 0, line = 0;
    std::vector<std::vector<int>> ans (r, std::vector<int>(c, 0));
    for (int i = 0; i < mat.size(); ++i) {
        for (int j = 0; j < mat[i].size(); ++j) {
            ans[row][line++] = mat[i][i];
            if(line == c){
                ++row;
                line = 0;
            }
        }
    }
    
    return ans;
}

除法和取模

在上一种方法中,我们需要跟踪我们何时到达结果矩阵的列的末尾,并且需要通过每次检查当前索引来更新当前行和列号以放置提取的元素。我们可以利用数学来帮助解决,而不是在每一步都进行限制性检查。

  • cpp
vector<vector<int>> matrixReshape(vector<vector<int>>& mat, int r, int c) {
    if(r * c == mat.size() * mat[0].size()){
        return mat;
    }

    int count = 0;
    std::vector<std::vector<int>> ans(r, std::vector<int>(c));
    for (int i = 0; i < mat.size() * mat[0].size(); ++i) {
        ans[count / c][count % c] = mat[i / mat[0].size()][i % mat[0].size()];
        count++;
    }
    return ans;
}
  • java
package com.company;

import java.util.*;

public class Solution {
      /*
        给定矩阵的宽和高范围在 [1, 100]。
       给定的 r 和 c 都是正数
        */
      public static int[][] matrixReshape(int[][] nums, int r, int c) {
            if (nums.length * nums[0].length != r * c){
                return nums;
            }

            int[][] ans = new int[r][c];
            int count = 0;
            for (int i = 0; i < nums.length; i++){
                for (int j = 0; j < nums[i].length; j++){
                    ans[count / c][count % c] = nums[i][j];
                    count++;
                }
            }

            return ans;
      }

    public static void main(String[] args) {
       System.out.println(Arrays.deepToString(matrixReshape(new int[][] {
                       {1,2,3,4},
                       {5,1,2,3},
                       {9,5,1,6}
               }, 4, 3
       )));
    }
}

在这里插入图片描述

使用队列

队列是先进先出的

      public static int[][] matrixReshape(int[][] nums, int r, int c) {
            if (nums.length * nums[0].length != r * c){
                return nums;
            }

            // 将数组依次读入队列中
            Queue<Integer> query = new LinkedList<>();
            for (int i = 0; i < nums.length; i++){
                for (int j = 0; j < nums[i].length; j++){
                    query.add(nums[i][j]);
                }
            }

            int[][] ans = new int[r][c];
            for (int i = 0; i < ans.length; i++){
                for (int j = 0; j < ans[i].length; j++){
                    ans[i][j] = query.remove();
                }
            }
            
            return ans;
      }

在这里插入图片描述

vector<vector<int>> matrixReshape(vector<vector<int>>& mat, int r, int c) {
    if(r * c != mat.size() * mat[0].size()){
        return mat;
    }

    std::queue<int> queue;
    for (int i = 0; i < mat.size(); ++i) {
        for (int j = 0; j < mat[i].size(); ++j) {
            queue.push(mat[i][j]);
        }
    }

    std::vector<std::vector<int>> ans(r, std::vector<int>(c));
    for (int i = 0; i < r; ++i) {
        for (int j = 0; j < c; ++j) {
            ans[i][j] = queue.front();
            queue.pop();
        }
    }
    return ans;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值