leetcode:110. 平衡二叉树

题目来源

题目描述

在这里插入图片描述

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};



class Solution {
public:
    bool isBalanced(TreeNode* root) {

    }
};

题目解析

树的深度 = max(左子树的深度, 右子树的深度) + 1

递归套路求解

分析:如果想要知道以root为根节点的树是不是平衡二叉树,那么它满足如下条件:

  • 左子树是平衡二叉树
  • 右子树是平衡二叉树
  • 自己也是平衡二叉树

判断root是不是平衡二叉树的前提是,root必须从询问它的左右子树:

  • 你是不是平衡二叉树
  • 你的高度是多少

因此,我们可以定义一个Info:

struct Info{
        bool isBalanced;
        int height;
        
        explicit Info(bool b, int h) : isBalanced(b), height(h) {
            
        }
    };

然后递归求解:

    Info process(TreeNode *root){
        if(root == nullptr){
            return Info(true, 0);
        }
        
        // 询问左右子树的信息
        Info leftInfo = process(root->left);
        Info rightInfo = process(root->right);
        
        // 得出自己的信息
        int height = std::max(leftInfo.height, rightInfo.height) + 1;
        bool isBalanced = true;
        if(!leftInfo.isBalanced) {
            isBalanced = false;
        }
        if(!rightInfo.isBalanced) {
            isBalanced = false;
        }
        if(std::abs(leftInfo.height - rightInfo.height) > 1) {
            isBalanced = false;
        }
        return Info(isBalanced, height);
    }

最后调用:

	bool isBalanced(TreeNode* root) {
        if(root == nullptr){
            return true;
        }
        return process(root).isBalanced;
    }

整体代码如下:

class Solution {
    struct Info{
        bool isBalanced;
        int height;
        
        explicit Info(bool b, int h) : isBalanced(b), height(h) {
            
        }
    };

    Info process(TreeNode *root){
        if(root == nullptr){
            return Info(true, 0);
        }
        
        Info leftInfo = process(root->left);
        Info rightInfo = process(root->right);
        
        int height = std::max(leftInfo.height, rightInfo.height) + 1;
        bool isBalanced = true;
        if(!leftInfo.isBalanced) {
            isBalanced = false;
        }
        if(!rightInfo.isBalanced) {
            isBalanced = false;
        }
        if(std::abs(leftInfo.height - rightInfo.height) > 1) {
            isBalanced = false;
        }
        return Info(isBalanced, height);
    }
    
public:
    bool isBalanced(TreeNode* root) {
        if(root == nullptr){
             return true;
        }
        return process(root).isBalanced;
    }
};

递归解法

首先判断左子树是不是平衡二叉树,然后判断右子树是不是平衡二叉树,最后确定自己是不是平衡二叉树。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public boolean isBalanced(TreeNode root) {
        if (root == null){
            return true;
        }

        if (Math.abs(helper(root.left) - helper(root.right)) > 1){
            return false;
        }

        return isBalanced(root.left) && isBalanced(root.right);
    }

    public int  helper(TreeNode root){
        if (root == null){
            return 0;
        }

        int left = helper(root.left) ;
        int right = helper(root.right);

        return Math.max(left, right) + 1;
    }

}
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public boolean isBalanced(TreeNode root) {
        if (root == null){
            return true;
        }

        
        if (!isBalanced(root.left)){
            return false;
        }
        if (!isBalanced(root.right)){
            return false;
        }

        if((Math.abs(helper(root.left) - helper(root.right)) > 1)){
            return false;
        }
        
        return true;
    }

    public int  helper(TreeNode root){
        if (root == null){
            return 0;
        }

        int left = helper(root.left) ;
        int right = helper(root.right);

        return Math.max(left, right) + 1;
    }

}

在这里插入图片描述

优化

上面的解法在判断的每一个节点是否是二叉树的时候,都要递归求一遍它的高度。

我们并不需要求每一个树的高度,只要有一个节点的左右子树高度差不满足条件就直接退出即可

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    private boolean flag = true;
    public boolean isBalanced(TreeNode root) {
        if (root == null){
            return true;
        }

        helper(root);

        return flag;
    }

    private int  helper(TreeNode root){
        if (root == null){
            return 0;
        }

        int left = helper(root.left) ;
        int right = helper(root.right);

        if (Math.abs(left- right) > 1){
            flag = false;
            return -1;
        }

        return Math.max(left, right) + 1;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值