适合的场景
- 缓存:减轻mysql的查询压力,提升系统性能
- 排行榜:利用redis的sortSet实现
- 计算器,限速器:
- 利用redis中原子性的自增操作,我们可以统计类似用户点赞数、用户访问数等。这类操作如果用mysql,频繁的读写会带来相当大的压力
- 限速器比较典型的使用场景是限制某个用户访问某个API的频率,常用于抢购时,防止用户疯狂点击带来不必要的压力
- 好友关系:
- 利用集合的一些命令,比如求交集、并集、差集等。可以方便解决一些共同好友、共同爱好之类的功能
- 消息队列:
- 除了Redis自身的发布、订阅模式,我们也可以利用List来实现一个队列机器,比如:到货通知,邮件发送之类的需求,不需要高可靠,但是会带来非常大的DB压力,完全可以用List来完成异步解耦
- Session共享:
- Session是保存在服务器的文件中,如果是集群服务,同一个用户过来可能落在不同的机器上,这就会导致用户频繁登陆;采用Redis保存Session后,无论用户胡落在哪台机器上都能获取到对应的Session信息
不适合的场景
数据量太大,数据访问频率非常低的业务都不适合使用Redis,数据太大会增加成本,访问频率太低,保存在内存中纯属浪费资源