算法:数组中划分出最多异或和为0的子数组的数量

该博客讨论了一道编程题,题目要求在给定数组中找到能够使异或和为0的子数组最多的一种切分方式。通过动态规划和哈希映射的方法,可以找到最优解。博客解析了算法思路,包括定义状态转移方程和考虑不同情况,最终实现找到最多异或和为0的子数组个数。
摘要由CSDN通过智能技术生成

题目来源

题目描述

数组中所有数都异或起来的结果,叫做异或和给定一个数组ar,可以任意切分成若干个不相交的子数组

其中一定存在一种最优方案,使得切出异或和为0的子数组最多

返回这个最多数量

题目解析

从左到右尝试模型

(1)定义

d p [ i ] dp[i] dp[i]:arr[0…i]能够最多切出多少个异或和为0的部分,不要求必须以 i i i结尾。

  • 假设有数组arr,其索引[0…9],dp[9]表示从arr中切出几个部分能让异或和最多
  • 因此dp的长度和arr长度一样,最终返回dp[N - 1]

(2)可能性分类

  • arr[0…i]上切割,一定有一个最好划分,使得它的异或和为0的部分最多
  • 我们只关注最后一个部分,有两种可能:
    • 1)最后一个部分异或和不是0
    • 2)最后一个部分异或和是0
  • 用假设答案法,看最后一部分具有什么性质: 假设我已经从0切到了17,正在决定17切还是不切
    • 现在0~17整体所有的异或和是0,ok,这里可以切一刀
    • 现在0~17整体所有的异或和是100,看0~16是否出现过异或和为100的数,如果出现过,切一刀
class Solution {
public:
    int mostXor(std::vector<int> arr){
        if(arr.empty()){
            return 0;
        }

        int N = arr.size();
        std::vector<int> dp(N);
        std::map<int, int> map;
        map[0] = -1;

        int xor_sum = 0;
        for (int i = 0; i < N; ++i) {
            xor_sum ^= arr[i];
            if(map.count(xor_sum)){
                int pre = map[xor_sum];
                dp[i] = pre == -1 ? 1 : (dp[pre] + 1);
            }
            if (i > 0) {
                dp[i] = std::max(dp[i - 1], dp[i]);
            }
            map[xor_sum] = i;
        }
        return 0;
    }
};

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值