题目来源
题目描述
数组中所有数都异或起来的结果,叫做异或和给定一个数组ar,可以任意切分成若干个不相交的子数组
其中一定存在一种最优方案,使得切出异或和为0的子数组最多
返回这个最多数量
题目解析
从左到右尝试模型
(1)定义
d p [ i ] dp[i] dp[i]:arr[0…i]能够最多切出多少个异或和为0的部分,不要求必须以 i i i结尾。
- 假设有数组arr,其索引[0…9],dp[9]表示从arr中切出几个部分能让异或和最多
- 因此dp的长度和arr长度一样,最终返回dp[N - 1]
(2)可能性分类
- arr[0…i]上切割,一定有一个最好划分,使得它的异或和为0的部分最多
- 我们只关注最后一个部分,有两种可能:
- 1)最后一个部分异或和不是0
- 2)最后一个部分异或和是0
- 用假设答案法,看最后一部分具有什么性质: 假设我已经从0切到了17,正在决定17切还是不切
- 现在0~17整体所有的异或和是0,ok,这里可以切一刀
- 现在0~17整体所有的异或和是100,看
0~16
是否出现过异或和为100的数,如果出现过,切一刀
class Solution {
public:
int mostXor(std::vector<int> arr){
if(arr.empty()){
return 0;
}
int N = arr.size();
std::vector<int> dp(N);
std::map<int, int> map;
map[0] = -1;
int xor_sum = 0;
for (int i = 0; i < N; ++i) {
xor_sum ^= arr[i];
if(map.count(xor_sum)){
int pre = map[xor_sum];
dp[i] = pre == -1 ? 1 : (dp[pre] + 1);
}
if (i > 0) {
dp[i] = std::max(dp[i - 1], dp[i]);
}
map[xor_sum] = i;
}
return 0;
}
};