CPU使用率
CPU使用率,就是CPU被使用的比例,也就是空闲之外的使用比例
- Linux是一个多任务的操作系统,会将每个CPU的时间划分为很短的时间片,再通过调度器轮流分配给各个任务使用,因此造成多任务同时运行的错觉。
- 为了维护CPU时间,Linux通过事先定义的节拍率(内核中表示为HZ),触发时间中断,并使用全局变量Jiffes记录了开机以来的节拍数。每发生一次时间中断,Jiffies的值就加1
- 节拍率HZ是内核的可配选项,可以设置为100、250、1000等。不同的系统可能设置不同数值,可以通过/boot/config内核选项来查看它的配置值,比如下面查询中,节拍率设置成了250,也就是每秒钟触发250次时间中断
$ grep 'CONFIG_HZ=' /boot/config-$(uname -r)
CONFIG_HZ=250
- 同时,正因为节拍率HZ是内核选项,所以用户空间程序不能直接访问。为了方便用户空间程序,内核还提供了一个用户空间节拍器,它总是固定为100,也就是1/100.这样,用户空间程序就不需要关心内核中HZ被设置成了多少,因为它看到的是总固定值USER_HZ
Linux通过//proc
虚拟文件系统,向用户空间提供了系统内部状态的信息,而/proc/stat
提供的就是系统的CPU和任务统计信息。比如,如果你只关注CPU的话,可以执行下面的某类:
# 只保留各个CPU的数据
$ cat /proc/stat | grep ^cpu
us ni sys id wa hi si st guest gnice
cpu 590084 4268 1235478 5762130 17246 0 5748 0 0 0
cpu0 146707 1930 298457 1453246 3132 0 1311 0 0 0
cpu1 137571 903 296183 1460387 5409 0 1398 0 0 0
cpu2 173608 595 344495 1381436 3463 0 1396 0 0 0
cpu3 132196 839 296342 1467060 5241 0 1642 0 0 0
- 其中,第⼀列表示的是 CPU 编号,如cpu0、cpu1 ,⽽第⼀⾏没有编号的 cpu ,表示的是所有
CPU 的累加。 - 其他列则表示不同场景下 CPU 的累加节拍数,它的单位是 USER_HZ,也就是 10 ms(1/100秒),所以这其实就是不同场景下的 CPU 时间
- user(通常缩写为 us),代表⽤户态 CPU 时间。注意,它不包括下⾯的 nice 时间,但包括了 guest 时间
- nice(通常缩写为 ni),代表低优先级⽤户态 CPU 时间,也就是进程的 nice 值被调整为 1-19 之间时的 CPU 时间。这⾥注意,nice 可取值范围是 -20 到 19,数值越⼤,优先级反⽽越低。
- system(通常缩写为sys),代表内核态 CPU 时间
- idle(通常缩写为id),代表空闲时间。注意,它不包括等待 I/O 的时间(iowait)。
- iowait(通常缩写为 wa),代表等待 I/O 的 CPU 时间。
- irq(通常缩写为 hi),代表处理硬中断的 CPU 时间。
- softirq(通常缩写为 si),代表处理软中断的 CPU 时间。
- steal(通常缩写为 st),代表当系统运⾏在虚拟机中的时候,被其他虚拟机占⽤的 CPU 时间。
- guest(通常缩写为 guest),代表通过虚拟化运⾏其他操作系统的时间,也就是运⾏虚拟机的 CPU 时间。
- guest_nice(通常缩写为 gnice),代表以低优先级运⾏虚拟机的时间。
⽽我们通常所说的 CPU 使⽤率,就是除了空闲时间外的其他时间占总 CPU 时间的百分⽐,⽤公式来表示就是:
C P U 使 用 率 = 1 − 空 闲 时 间 总 C P U 时 间 CPU使用率 ={ 1 -\frac{空闲时间}{总CPU时间}} CPU使用率=1−总CPU时间空闲时间
当然,如果你直接使用/proc/stat的数据(也就是开机以来的节拍累加值),算出来的式开机以来的平均CPU使用率,一般没有参考价值
所以,为了计算CPU使用率,性能工具一般都会取间隔一段时间(比如3s)的两次值,作差后,再计算出这段时间内的平均CPU使用率,即:
平 均 C P U 使 用 率 = 1 − 空 闲 时 间 n e w − 空 闲 时 间 o l d 总 C P U 时 间 n e w − 总 C P U 时 间 o l d 平均CPU使用率 ={ 1 -\frac{空闲时间_{new}-空闲时间_{old}}{总CPU时间_{new}-总CPU时间_{old}}} 平均CPU使用率=1−总CPU时间new−总CPU时间old空闲时间new−空闲时间old
这个公式,就是我们用各种性能工具所看到的CPU使用率的实际计算方法。
现在,我们知道了系统CPU使用率的计算方法,那进程呢?跟系统的指标类似,Linux也给每个进程提供了运行情况的统计,也就是/proc/[pid]/stat。
问题:是不是说要查看CPU的使用率式,就必须先读取/proc/stat和/proc/[pid]/stat这两个文件,然后再按照上面的公式计算出来呢?
当然不是,Linux上提供了各种各样的性能分析工具已经计算好了。
不过要注意,性能分析工具给出的都是间隔一段时间的平均CPU使用率,所以要注意间隔时间的设置。当要用多个工具比对时,先保证它们用的是相同的时间间隔。
比如,关于top和ps这两个工具报告的CPU使用率,默认的结果不一样,因为top默认使用的是3s时间间隔,而ps使用的是进程的整个生命周期
怎么查看CPU使用率
top和ps是最常用的查看CPU使用率的工具:
- top显示了系统总体的CPU和内存使用情况,以及各个进程的资源使用情况 (top看的是系统总使用率,不一定能发现问题)
- ps显示了每个进程的资源使用情况
// 默认每3s刷新一次
$ top
top - 23:45:48 up 5:42, 1 user, load average: 17.91, 17.19, 16.67
任务: 309 total, 1 running, 308 sleeping, 0 stopped, 0 zombie
%Cpu(s): 15.6 us, 72.0 sy, 0.0 ni, 12.2 id, 0.0 wa, 0.0 hi, 0.2 si, 0.0 st
MiB Mem : 7932.9 total, 5464.2 free, 1015.7 used, 1453.0 buff/cache
MiB Swap: 2048.0 total, 2048.0 free, 0.0 used. 6633.9 avail Mem
进程号 USER PR NI VIRT RES SHR %CPU %MEM TIME+ COMMAND
12049 root 20 0 35832 10508 8876 S 328.9 0.1 281:28.74 sysbench
2187 oceanst+ 20 0 275040 64816 37504 S 9.0 0.8 2:38.67 Xorg
2318 oceanst+ 20 0 4243652 253908 111472 S 5.6 3.1 1:50.21 gnome-shell
2659 oceanst+ 20 0 1053268 69880 51056 S 3.7 0.9 1:17.22 gnome-terminal-
11 root 20 0 0 0 0 I 0.7 0.0 0:12.64 rcu_sched
2470 oceanst+ 20 0 295076 41768 30668 S 0.3 0.5 0:33.54 vmtoolsd
15246 root 20 0 15096 4052 3284 R 0.3 0.0 0:00.05 top
-
这个输出结果中,第三⾏ %Cpu 就是系统的 CPU 使⽤率,具体每⼀列的含义上⼀节都讲过,只是把CPU时间变换成了CPU使⽤率。不过需要注意,top 默认显示的是所有 CPU 的平均值,这个时候你只需要按下数字 1 ,就可以切换到每个 CPU 的使⽤率了。
-
继续往下看,空⽩⾏之后是进程的实时信息,每个进程都有⼀个 %CPU 列,表示进程的 CPU 使⽤率。它是⽤户态和内核态
CPU 使⽤率的总和,包括进程⽤户空间使⽤的 CPU、通过系统调⽤执⾏的内核空间 CPU 、以及在就绪队列等待运⾏的CPU。在虚拟化环境中,它还包括了运⾏虚拟机占⽤的 CPU。
所以,到这⾥我们可以发现, top 并没有细分进程的⽤户态CPU和内核态 CPU。
问题: 那要怎么查看每个进程的详细情况呢?
pidstat 是⼀个专⻔分析每个进程 CPU 使⽤情况的⼯具
# 每隔1秒输出⼀组数据,共输出5组
$ pidstat 1 5
Linux 5.8.0-48-generic (oceanstar) 2021年10月21日 _x86_64_ (4 CPU)
23时50分37秒 UID PID %usr %system %guest %wait %CPU CPU Command
23时50分38秒 1000 2187 0.99 1.98 0.00 0.00 2.97 0 Xorg
23时50分38秒 1000 2318 0.99 0.99 0.00 0.00 1.98 3 gnome-shell
23时50分38秒 1000 2659 0.99 0.99 0.00 0.00 1.98 3 gnome-terminal-
23时50分38秒 0 15212 0.00 0.99 0.00 0.00 0.99 1 kworker/1:2-events
23时50分38秒 0 15250 0.00 1.98 0.00 0.00 1.98 2 pidstat
...
平均时间: UID PID %usr %system %guest %wait %CPU CPU Command
平均时间: 0 11 0.00 0.20 0.00 0.00 0.20 - rcu_sched
平均时间: 1000 2187 0.80 0.80 0.00 0.20 1.59 - Xorg
平均时间: 1000 2318 0.80 0.40 0.00 0.20 1.20 - gnome-shell
平均时间: 1000 2659 0.60 0.20 0.00 0.20 0.80 - gnome-terminal-
平均时间: 0 15217 0.00 0.20 0.00 0.00 0.20 - kworker/2:0-events
平均时间: 0 15251 0.80 1.59 0.00 0.00 2.39 - pidstat
上面命令一间隔1s展示了进程的5组CPU使用率:
- ⽤户态CPU使⽤率 (%usr);
- 内核态CPU使⽤率(%system);
- 运⾏虚拟机CPU使⽤率(%guest);
- 等待 CPU使⽤率(%wait);
- 以及总的CPU使⽤率(%CPU)。
最后的 Average 部分,还计算了 5 组数据的平均值。
CPU使用率过高怎么办?
通过top、ps、pidstat等工具,就能够找到CPU使用率较高的进程。接下来的问题是,占用CPU的到底是代码里的哪个函数呢?
你可能会想到使用GDB,但是GDB并不适合在性能分析的早期使用,因为GDB调试程序会中断程序的运行,这在线上环境是不允许的。所以,GDB只适合用在性能分析的后期,当你找出了出问题的大致函数后,线下再借助它来进一步调试函数内部的问题
我们可以使用perf来第一时间分析进程的CPU问题。 perf是Linux 2.6.31 以后内置的性能分析工具。它以性能事件采样为基础,线下再借助它来进一步调试函数内部的问题。
- 比如,
perf top
可以实时显式占用CPU时钟最多的函数或者指令,因此可以用来查找热点函数:
$ perf top
Samples: 833 of event 'cpu-clock', Event count (approx.): 97742399
Overhead Shared Object Symbol
7.28% perf [.] 0x00000000001f78a4
4.72% [kernel] [k] vsnprintf
4.32% [kernel] [k] module_get_kallsym
3.65% [kernel] [k] _raw_spin_unlock_irqrestore
-
输出结果中,第⼀⾏包含三个数据,分别是采样数(Samples)、事件类型(event)和事件总数量(Event count)。
- ⽐如这个例⼦中,perf 总共采集了 833 个 CPU 时钟事件,⽽总事件数则为 97742399。
- 采样数需要特别关注。。如果采样数过少(⽐如只有⼗⼏个),那下⾯的排序和百分⽐就没什么实际参考价值了。
-
再往下看是⼀个表格式样的数据,每⼀⾏包含四列,分别是:
- 第⼀列 Overhead ,是该符号的性能事件在所有采样中的⽐例,⽤百分⽐来表示。
- 第⼆列 Shared ,是该函数或者指令所在的动态共享对象(Dynamic Shared Object),比如内核、进程名、动态链接库名、内核模块名等
- 第三列 Object,是动态共享对象的类型,比如[.] 表示用户空间的可执行程序、或者动态链接库,而
[k]
则表示内核空间 - 第四列 Symbol,即符号名,也就是函数名。当函数名未知是,用十六进制的地址来表示
- 还是以上⾯的输出为例,我们可以看到,占⽤ CPU 时钟最多的是 perf ⼯具⾃身,不过它的⽐例也只有 7.28%,说明系统并没有 CPU 性能问题
-
比如,perf record和 perf report。 perf top 虽然实时展示了系统的性能信息,但它的缺点是并不保存数据,也就⽆法⽤于离线或者后续的分析。⽽ perf record 则提供了保存数据的功能,保存后的数据,需要你⽤ perf report 解析展示
$ perf record # 按Ctrl+C终⽌采样
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.452 MB perf.data (6093 samples) ]
$ perf report # 展示类似于perf top的报告
Samples: 59K of event 'cpu-clock:pppH', Event count (approx.): 14843250000
Overhead Command Shared Object Symbol
4.90% php-fpm libm-2.24.so [.] sqrt
3.83% php-fpm php-fpm [.] execute_ex
3.60% php-fpm php-fpm [.] add_function
3.22% php-fpm php-fpm [.] 0x000000000094ede0
3.01% php-fpm [kernel.kallsyms] [k] __prepare_exit_to_usermode
1.93% php-fpm php-fpm [.] 0x00000000008c4a6c
1.91% php-fpm php-fpm [.] 0x00000000008c4ae5
1.90% php-fpm php-fpm [.] 0x00000000009513cc
1.79% php-fpm php-fpm [.] 0x00000000008c4a64
1.62% php-fpm php-fpm [.] 0x000000000098de23
1.26% php-fpm php-fpm [.] 0x00000000008cda08
案例:找出CPU使用率高的是由哪个函数引起的
下⾯我们就以 Nginx + PHP 的 Web 服务为例,来看看当你发现 CPU 使⽤率过⾼的问题后,要怎么使⽤ top 等⼯具找出异常的进程,⼜要怎么利⽤ perf 找出引发性能问题的函数。
准备
- 机器配置:2 CPU,8GB 内存
- 预先安装 docker、sysstat、perf、ab 等⼯具
- ab(apache bench)是一个常用的HTTP服务性能测试工具,这里用来模拟Ngnix的客户端。
- 由于Ngnix和PHP的配置比较麻烦,请用Docker 镜像操作,这样只需要运行两个容器,就可以得模拟环境
apt install docker.io sysstat linux-tools-common apache2-utils
注意,这里需要用到两台虚拟机:
- 一台用作web服务器,来模拟性能问题
- 一台用作web服务器的客户端,来给web服务增加压力请求
使用两台虚拟机是为了相互隔离,避免“交叉感染”(电脑太慢了,就不隔离了,实际测试的时候应该尽量避免感染)
注意:下⾯的所有命令,都默认假设以 root ⽤户运⾏,
操作和分析
- ⾸先,在第⼀个终端执⾏下⾯的命令来运⾏ Nginx 和 PHP 应⽤:
$ docker run --name nginx -p 10000:80 -itd feisky/nginx
$ docker run --name phpfpm -itd --network container:nginx feisky/php-fpm
- 然后,在第⼆个终端使⽤ curl 访问 http://[VM1的IP]:10000,确认 Nginx 已正常启动。你应该可以看到 It works! 的响应。
# 192.168.0.10是第⼀台虚拟机的IP地址
$ curl http://127.0.0.1:10000/
It works!
- 接着,我们来测试⼀下这个 Nginx 服务的性能。在第⼆个终端运⾏下⾯的 ab 命令:
# 并发10个请求测试Nginx性能,总共测试100个请求
$ ab -c 10 -n 100 http://127.0.0.1:10000/
This is ApacheBench, Version 2.3 <$Revision: 1706008 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd,pe
...
Requests per second: 41.22 [#/sec] (mean)
Time per request: 242.616 [ms] (mean)
...
从ab的输出结果我们可以看到,Nginx能承受的每秒平均请求数为 41.22。我们将测试的请求总数加到10000,在第二个终端:
$ ab -c 10 -n 10000 http://127.0.0.1:10000/
接着,回到第⼀个终端运⾏ top 命令,并按下数字 1 ,切换到每个 CPU 的使⽤率:
这⾥可以看到,系统中有⼏个 php-fpm 进程的 CPU 使⽤率加起来接近 400%;⽽每个 CPU 的⽤户使⽤率(us)也已经超过了 98%,接近饱和。这样,我们就可以确认,正是⽤户空间的 php-fpm 进程,导致CPU 使⽤率骤升。
那再往下⾛,怎么知道是 php-fpm 的哪个函数导致了 CPU 使⽤率升⾼呢?我们来⽤ perf 分析⼀下。在第⼀个终端运⾏下⾯的perf命令:
# -g开启调⽤关系分析,-p指定php-fpm的进程号3235
$ perf top -g -p 3235
按⽅向键切换到 php-fpm,再按下回⻋键展开 php-fpm 的调⽤关系,你会发现,调⽤关系最终到了 sqrt 和 add_function。看
遇到的问题:没有看到函数名称,只是看到了十六进制的东西
- 原因:这是分析docker容器应用时常会碰到的一个问题,因为容器应用所依赖的库都在镜像里面
- 解决思路:
- 在容器外面构建相同路径的依赖库。这种方法不推荐,一是因为找出这些依赖比较麻烦,更重要的是构建这些路径会污染虚拟机的环境
- 在容器外面把分析记录保存下来,到容器里面再去查看结果,这样库和符号的路径就是对的了‘
- 操作:
- 在系统上运行
perf record -g -p < pid >
,执行一会儿(比如5s),然后ctrl+c停止
- -i 导入的数据文件名称,如果没有则默认为perf.data
- -g 生成函数调用关系图,此时内核要打开CONFIG_KALLSYMS;用户空间库或者执行文件需要带符号信息(not stripped),编译选项需要加上-g。
- 把生成的perf.data(这个文件生成在执行命令的当前目录下, find / -name perf.data)文件拷贝到容器里面去分析:
docker cp perf.data phpfpm:/tmp
docker exec -i -t phpfpm bash
- $
cd /tmp/
- $
apt-get update && apt-get install -y linux-perf linux-tools procps
- $
perf_4.9 report
incompatible file format (rerun with -v to learn more) ???? 这个问题怎么解决
- 注意:最后运⾏的⼯具名字是容器内部安装的版本 perf_4.9,⽽不是 perf 命令,这是因为 perf 会去跟内核的版本进⾏匹配,但镜像⾥⾯安装的perf版本有可能跟虚拟机的内核版本不⼀致。安装perf后,执行perf命令报错。
我们拷⻉出 Nginx 应⽤的源码,看看是不是调⽤了这两个函数:
# 从容器phpfpm中将PHP源码拷⻉出来
$ docker cp phpfpm:/app .
# 使⽤grep查找函数调⽤
$ grep sqrt -r app/ #找到了sqrt调⽤
app/index.php: $x += sqrt($x);
$ grep add_function -r app/ #没找到add_function调⽤,这其实是PHP内置函数
OK,原来只有 sqrt 函数在 app/index.php ⽂件中调⽤了。那最后⼀步,我们就该看看这个⽂件的源码了
修复之后也打包成立一个镜像,可以如下运行它:
# 停⽌原来的应⽤
$ docker rm -f nginx phpfpm
# 运⾏优化后的应⽤
$ docker run --name nginx -p 10000:80 -itd feisky/nginx:cpu-fix
$ docker run --name phpfpm -itd --network container:nginx feisky/php-fpm:cpu-fix
接着,到第⼆个终端来验证⼀下修复后的效果。⾸先Ctrl+C停⽌之前的ab命令后,再运⾏下⾯的命令:
$ ab -c 10 -n 10000 http://10.240.0.5:10000/
...
Complete requests: 10000
Failed requests: 0
Total transferred: 1720000 bytes
HTML transferred: 90000 bytes
Requests per second: 2838.99 [#/sec] (mean)
Time per request: 3.522 [ms] (mean)
Time per request: 0.447 [ms] (mean, across all concurrent requests)
Transfer rate: 375.75 [Kbytes/sec] received
从这⾥你可以发现,现在每秒的平均请求数,已经从原来的几十变成了 2838.99
感觉:这么多并发一下子就返回了,而之前要等很久才能测试完全部压测
小结
CPU使用率是最直观也是最常用的系统性能指标,更是我们在排查性能问题时,通常会关注的第一个指标。所以我们要熟悉它的含义,需要弄清楚⽤户(%user)、Nice(%nice)、系统(%system) 、等待 I/O(%iowait) 、中断(%irq)以及软中断(%softirq)这⼏种不同 CPU 的使⽤率。⽐如说
- 用户CPU和Nice CPU高,说明用户态进程占用了较多的CPU,所以应该着重排查进程的性能问题
- 系统CPU高,说明内核态占用了较多的CPU,所以应该着重排查内核线程或者系统调用的性能问题
- IO等待CPU高,说明等待IO的时间比较长,所以应该排查系统存储是不是出现了IO问题
- 软中断和硬中断高,说明软中断或者硬中断的处理程序占用了较多的CPU,所以应该着重排查内核中的中断服务程序
碰到 CPU 使⽤率升⾼的问题,你可以借助 top、pidstat 等⼯具,确认引发 CPU 性能问题的来源;再使⽤ perf 等⼯具,排查出引起性能问题的具体函数。
案例:系统CPU使用率很高,但是不一定能找到相对应的高CPU使用率的进程
通过上面我们可以知道,系统的CPU使用率,不仅包括进程用户态和内核态的运行,还包括中断处理、等待IO以及内核线程等,不一定能找到相对应的高CPU使用率的进程。
准备
准备和上面一样,只是操作的容器不一样
操作和分析
⾸先,我们在第⼀个终端,执⾏下⾯的命令运⾏ Nginx 和 PHP 应⽤:
$ docker run --name nginx -p 10000:80 -itd feisky/nginx:sp
$ docker run --name phpfpm -itd --network container:nginx feisky/php-fpm:sp
然后,在第⼆个终端,使⽤ curl 访问 http://[VM1的IP]:10000,确认 Nginx 已正常启动。你应该可以看到 It works! 的响应。
# 192.168.0.10是第⼀台虚拟机的IP地址
$ curl http://127.0.0.1:10000/
It works!
接着,我们来测试⼀下这个 Nginx 服务的性能。在第⼆个终端运⾏下⾯的 ab 命令。要注意,与上次操作不同的是,这次我们
需要并发100个请求测试Nginx性能,总共测试1000个请求。
# 并发100个请求测试Nginx性能,总共测试1000个请求
$ ab -c 100 -n 1000 http://127.0.0.1:10000/
This is ApacheBench, Version 2.3 <$Revision: 1706008 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd,
...
Requests per second: 87.86 [#/sec] (mean)
Time per request: 1138.229 [ms] (mean)
从ab的输出结果我们可以看到,Nginx能承受的每秒平均请求数,只有 87 多⼀点,是不是感觉它的性能有点差呀。那么,到底是哪⾥出了问题呢?我们再⽤ top 和 pidstat 来观察⼀下。
这次,我们在第⼆个终端,将测试的并发请求数改成5,同时把请求时⻓设置为10分钟(-t 600)。这样,当你在第⼀个终端使⽤性能分析⼯具时, Nginx 的压⼒还是继续的。
继续在第⼆个终端运⾏ ab 命令:
$ ab -c 5 -t 600 http://127.0.0.1:10000/
然后,我们在第⼀个终端运⾏ top 命令,观察系统的 CPU 使⽤情况:
$ top
...
%Cpu(s): 80.8 us, 15.1 sy, 0.0 ni, 2.8 id, 0.0 wa, 0.0 hi, 1.3 si, 0.0 st
...
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
6882 root 20 0 8456 5052 3884 S 2.7 0.1 0:04.78 docker-containe
6947 systemd+ 20 0 33104 3716 2340 S 2.7 0.0 0:04.92 nginx
7494 daemon 20 0 336696 15012 7332 S 2.0 0.2 0:03.55 php-fpm
7495 daemon 20 0 336696 15160 7480 S 2.0 0.2 0:03.55 php-fpm
10547 daemon 20 0 336696 16200 8520 S 2.0 0.2 0:03.13 php-fpm
10155 daemon 20 0 336696 16200 8520 S 1.7 0.2 0:03.12 php-fpm
10552 daemon 20 0 336696 16200 8520 S 1.7 0.2 0:03.12 php-fpm
15006 root 20 0 1168608 66264 37536 S 1.0 0.8 9:39.51 dockerd
4323 root 20 0 0 0 0 I 0.3 0.0 0:00.87 kworker/u4
- 观察 top 输出的进程列表可以发现,CPU 使⽤率最⾼的进程也只不过才 2.7%,看起来并不⾼。
- 然⽽,再看系统 CPU 使⽤率( %Cpu )这⼀⾏,你会发现,系统的整体 CPU 使⽤率是⽐较⾼的:⽤户 CPU 使⽤率(us)已经到了 80%,系统 CPU 为 15.1%,⽽空闲 CPU (id)则只有 2.8%。
为什么⽤户 CPU 使⽤率这么⾼呢?我们再重新分析⼀下进程列表,看看有没有可疑进程:
- docker-containerd 进程是⽤来运⾏容器的,2.7% 的 CPU 使⽤率看起来正常;
- Nginx 和 php-fpm 是运⾏ Web 服务的,它们会占⽤⼀些 CPU 也不意外,并且 2% 的 CPU 使⽤率也不算⾼;
- 再往下看,后⾯的进程呢,只有 0.3% 的 CPU 使⽤率,看起来不太像会导致⽤户 CPU 使⽤率达到 80%。
那就奇怪了,明明⽤户 CPU 使⽤率都80%了,可我们挨个分析了⼀遍进程列表,还是找不到⾼ CPU 使⽤率的进程。看来top是不管⽤了,那还有其他⼯具可以查看进程 CPU 使⽤情况吗? pidstat,它可以⽤来分析进程的 CPU 使⽤情况。
接下来,我们还是在第⼀个终端,运⾏ pidstat 命令:
# 间隔1秒输出⼀组数据(按Ctrl+C结束)
$ pidstat 1
...
04:36:24 UID PID %usr %system %guest %wait %CPU CPU Command
04:36:25 0 6882 1.00 3.00 0.00 0.00 4.00 0 docker-containe
04:36:25 101 6947 1.00 2.00 0.00 1.00 3.00 1 nginx
04:36:25 1 14834 1.00 1.00 0.00 1.00 2.00 0 php-fpm
04:36:25 1 14835 1.00 1.00 0.00 1.00 2.00 0 php-fpm
04:36:25 1 14845 0.00 2.00 0.00 2.00 2.00 1 php-fpm
04:36:25 1 14855 0.00 1.00 0.00 1.00 1.00 1 php-fpm
04:36:25 1 14857 1.00 2.00 0.00 1.00 3.00 0 php-fpm
04:36:25 0 15006 0.00 1.00 0.00 0.00 1.00 0 dockerd
04:36:25 0 15801 0.00 1.00 0.00 0.00 1.00 1 pidstat
04:36:25 1 17084 1.00 0.00 0.00 2.00 1.00 0 stress
04:36:25 0 31116 0.00 1.00 0.00 0.00 1.00 0 atopacctd
观察⼀会⼉,你是不是发现,所有进程的 CPU 使⽤率也都不⾼啊,最⾼的 Docker 和 Nginx 也只有 4% 和 3%,即使所有进程的 CPU 使⽤率都加起来,也不过是 21%,离 80% 还差得远呢!
明明⽤户 CPU 使⽤率已经⾼达 80%,为什么却怎么都找不到是哪个进程的问题???
会出现这种情况,很可能是因为前⾯的分析漏了⼀些关键信息。
现在,我们回到第⼀个终端,重新运⾏ top 命令,并观察⼀会⼉:
$ top
top - 04:58:24 up 14 days, 15:47, 1 user, load average: 3.39, 3.82, 2.74
Tasks: 149 total, 6 running, 93 sleeping, 0 stopped, 0 zombie
%Cpu(s): 77.7 us, 19.3 sy, 0.0 ni, 2.0 id, 0.0 wa, 0.0 hi, 1.0 si, 0.0 st
KiB Mem : 8169348 total, 2543916 free, 457976 used, 5167456 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 7363908 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
6947 systemd+ 20 0 33104 3764 2340 S 4.0 0.0 0:32.69 nginx
6882 root 20 0 12108 8360 3884 S 2.0 0.1 0:31.40 docker-containe
15465 daemon 20 0 336696 15256 7576 S 2.0 0.2 0:00.62 php-fpm
15466 daemon 20 0 336696 15196 7516 S 2.0 0.2 0:00.62 php-fpm
15489 daemon 20 0 336696 16200 8520 S 2.0 0.2 0:00.62 php-fpm
6948 systemd+ 20 0 33104 3764 2340 S 1.0 0.0 0:00.95 nginx
15006 root 20 0 1168608 65632 37536 S 1.0 0.8 9:51.09 dockerd
15476 daemon 20 0 336696 16200 8520 S 1.0 0.2 0:00.61 php-fpm
15477 daemon 20 0 336696 16200 8520 S 1.0 0.2 0:00.61 php-fpm
24340 daemon 20 0 8184 1616 536 R 1.0 0.0 0:00.01 stress
24342 daemon 20 0 8196 1580 492 R 1.0 0.0 0:00.01 stress
24344 daemon 20 0 8188 1056 492 R 1.0 0.0 0:00.01 stress
24347 daemon 20 0 8184 1356 540 R 1.0 0.0 0:00.01 stress
- 这次从头开始看 top 的每⾏输出,咦?Tasks 这⼀⾏看起来有点奇怪,就绪队列中居然有 6 个 Running 状态的进程(6running),是不是有点多呢?
- 回想⼀下 ab 测试的参数,并发请求数是 5。再看进程列表⾥, php-fpm 的数量也是 5,再加上 Nginx,好像同时有 6 个进程也并不奇怪。但真的是这样吗?
- 再仔细看进程列表,这次主要看 Running(R) 状态的进程。你有没有发现, Nginx 和所有的 php-fpm 都处于Sleep(S)状态,⽽真正处于 Running(R)状态的,却是⼏个 stress 进程。这⼏个 stress 进程就⽐较奇怪了,需要我们做进⼀步的分析。
我们还是使⽤ pidstat 来分析这⼏个进程,并且使⽤ -p 选项指定进程的 PID。⾸先,从上⾯ top 的结果中,找到这⼏个进程的PID。⽐如,先随便找⼀个 24344,然后⽤ pidstat 命令看⼀下它的 CPU 使⽤情况:
$ pidstat -p 24344
16:14:55 UID PID %usr %system %guest %wait %CPU CPU Comman
- 奇怪,居然没有任何输出。难道是pidstat 命令出问题了吗?在怀疑性能⼯具出问题前,最好还是先⽤其他⼯具交叉确认⼀下。那⽤什么⼯具呢? ps 应该是最简单易⽤的。我们在终端⾥运⾏下⾯的命令,看看 24344 进程的状态
# 从所有进程中查找PID是24344的进程
$ ps aux | grep 24344
root 9628 0.0 0.0 14856 1096 pts/0 S+ 16:15 0:00 grep --color=auto 24344
- 还是没有输出。现在终于发现问题,原来这个进程已经不存在了,所以 pidstat 就没有任何输出。既然进程都没了,那性能问题应该也跟着没了吧。我们再⽤ top 命令确认⼀下:
$ top
...
%Cpu(s): 80.9 us, 14.9 sy, 0.0 ni, 2.8 id, 0.0 wa, 0.0 hi, 1.3 si, 0.0 st
...
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
6882 root 20 0 12108 8360 3884 S 2.7 0.1 0:45.63 docker-containe
6947 systemd+ 20 0 33104 3764 2340 R 2.7 0.0 0:47.79 nginx
3865 daemon 20 0 336696 15056 7376 S 2.0 0.2 0:00.15 php-fpm
6779 daemon 20 0 8184 1112 556 R 0.3 0.0 0:00.01 stress
-
好像⼜错了。结果还跟原来⼀样,⽤户 CPU 使⽤率还是⾼达 80.9%,系统 CPU 接近 15%,⽽空闲 CPU 只有2.8%,Running 状态的进程有 Nginx、stress等。
-
可是,刚刚我们看到stress 进程不存在了,怎么现在还在运⾏呢?再细看⼀下 top 的输出,原来,这次 stress 进程的 PID 跟前⾯不⼀样了,原来的 PID 24344 不⻅了,现在的是 6779。
进程的PID在变,这说明什么呢?要么是这些进程在不停的重启,要么就是全新的进程,这无非也就是两个原因:
- 第一个原因:进程在不停的崩溃重启,比如因为段错误、配置错误等等。这时,进程在退出之后可能又被监控系统自动重启了
- 第二个原因:这些进程当时短时进程,也就是在其他应用内部通过exec调用的外面命令。这些命令一般都只允许很短的时间就会结束,你很难用top这种间隔时间⽐较⻓的⼯具发现(上⾯的案例,我们碰巧发现了)。
要想继续分析下去,我们必须先找到stress的父进程。
要怎么查找一个进程的父进程呢?
可以用pstree
以树状形式显示所有进程之间的关系:
$ pstree | grep stress
|-docker-containe-+-php-fpm-+-php-fpm---sh---stress
| |-3*[php-fpm---sh---stress---stress]
从这⾥可以看到,stress 是被 php-fpm 调⽤的⼦进程,并且进程数量不⽌⼀个(这⾥是3个)。找到⽗进程后,我们能进⼊app 的内部分析了。
- ⾸先,当然应该去看看它的源码。运⾏下⾯的命令,把案例应⽤的源码拷⻉到 app ⽬录,然后再执⾏ grep 查找是不是有代码再调⽤ stress 命令:
# 拷⻉源码到本地
$ docker cp phpfpm:/app .
# grep 查找看看是不是有代码在调⽤stress命令
$ grep stress -r app
app/index.php:// fake I/O with stress (via write()/unlink()).
app/index.php:$result = exec("/usr/local/bin/stress -t 1 -d 1 2>&1", $output, $status);
- 找到了,果然是 app/index.php ⽂件中直接调⽤了 stress 命令。
再来看看 app/index.php 的源代码:
$ cat app/index.php
<?php
// fake I/O with stress (via write()/unlink()).
$result = exec("/usr/local/bin/stress -t 1 -d 1 2>&1", $output, $status);
if (isset($_GET["verbose"]) && $_GET["verbose"]==1 && $status != 0) {
echo "Server internal error: ";
print_r($output);
} else {
echo "It works!";
}
?>
- 可以看到,源码⾥对每个请求都会调⽤⼀个 stress 命令,模拟 I/O 压⼒。
- 从注释上看,stress会通过write()和unlink()对IO进程进行压测。看来,这应该就是CPU使用率升高的原因呢?
不过,stress模拟的是IO压力,而之前在top的输出中看到的,却一直是用户CPU和系统CPU升高,并没有看到iowait升高。这⼜是怎么回事呢?stress 到底是不是 CPU 使⽤率升⾼的原因呢?
我们还得继续往下⾛。从代码中可以看到,给请求加⼊ verbose=1 参数后,就可以查看 stress 的输出:
$ curl http://192.168.0.10:10000?verbose=1
Server internal error: Array
(
[0] => stress: info: [19607] dispatching hogs: 0 cpu, 0 io, 0 vm, 1 hdd
[1] => stress: FAIL: [19608] (563) mkstemp failed: Permission denied
[2] => stress: FAIL: [19607] (394) <-- worker 19608 returned error 1
[3] => stress: WARN: [19607] (396) now reaping child worker processes
[4] => stress: FAIL: [19607] (400) kill error: No such process
[5] => stress: FAIL: [19607] (451) failed run completed in 0s
)
- 看错误消息 mkstemp failed: Permission denied ,以及 failed run completed in 0s。原来 stress 命令并没有成功,它因为权限问题失败退出了。看来,我们发现了⼀个 PHP 调⽤外部 stress 命令的 bug:没有权限创建临时⽂件。
- 从这里我们可以猜测,正是由于权限错误,大量的stress进程在启动时初始化失败,进而导致用户CPU使用率的升高
分析出问题来源,下⼀步是不是就要开始优化了呢?当然不是!既然只是猜测,那就需要再确认⼀下,这个猜测到底对不对,是不是真的有⼤量的 stress 进程。该⽤什么⼯具或指标呢?
- 我们前⾯已经⽤了 top、pidstat、pstree 等⼯具,没有发现⼤量的 stress 进程。那么,还有什么其他的⼯具可以⽤吗?
- 可以用CPU性能分析工具perf:
# 记录性能事件,等待⼤约15秒后按 Ctrl+C 退出
$ perf record -g
# 查看报告
$ perf report
- 这样,你就可以看到下图这个性能报告:
- 从上面可以看出,stress 占了所有CPU时钟事件的 77%,⽽ stress 调⽤调⽤栈中⽐例最⾼的,是随机数⽣成函数 random(),看来它的确就是 CPU 使⽤率升⾼的元凶了。随后的优化就很简单了,只要修复权限问题,并减少或删除 stress 的调⽤,就可以减轻系统的 CPU 压⼒。
最后,在案例结束时,不要忘了清理环境,执⾏下⾯的 Docker 命令,停⽌案例中⽤到的 Nginx 进程:
$ docker rm -f nginx phpfpm
execsnoop
在上面案例中,我们使用率top、pidstat、pstress等工具分析了系统CPU使用率高的问题,发现CPU升高是由短时进程stress导致的,但是整个分析过程比较复杂。对于这类问题,有没有更好的解决方法呢?
- execsnoop就是一个专门为短时进程设计的工具。它通过ftrace实时监控进程的exec()行为,并输出短时进程的基本信息。包括进程PID、父进程PID、命令行参数以及执行的结果
- execsnoop所用的ftrace是一种常用的动态追踪技术,一般用于分析Linux内核的运行时行为。
⽐如,⽤ execsnoop 监控上述案例,就可以直接得到 stress 进程的⽗进程 PID 以及它的命令⾏参数,并可以发现⼤量的stress 进程在不停启动:
# 按 Ctrl+C 结束
$ execsnoop
PCOMM PID PPID RET ARGS
sh 30394 30393 0
stress 30396 30394 0 /usr/local/bin/stress -t 1 -d 1
sh 30398 30393 0
stress 30399 30398 0 /usr/local/bin/stress -t 1 -d 1
sh 30402 30400 0
stress 30403 30402 0 /usr/local/bin/stress -t 1 -d 1
sh 30405 30393 0
stress 30407 30405 0 /usr/local/bin/stress -t 1 -d 1
小结
碰到常规问题无法解释的CPU使用率情况,首先要想到的有可能是短时应用导致的问题,比如有可能是如下两种情况:
- 第一,应用里直接调用了其他二进制程序,这些程序通常运行时间比较短,通过top等工具也不容易发现
- 第二,应用程序本身在不停的崩溃重启,而启动过程的资源初始化,很肯能会占用相当多的CPU
对于这类进程,我们可以⽤ pstree 或者 execsnoop 找到它们的⽗进程,再从⽗进程所在的应⽤⼊⼿,排查问题的根源。 (另一个工具是perf top)