算法:无序数组小于等于k的最大连续子数组和

该博客讨论了一种优化算法问题,目标是在给定的无序整数数组中找到所有子数组中累加和小于或等于k的最长子数组的长度。首先介绍了两种不适用的直观方法,然后提出了利用前缀和和平衡二叉搜索树进行优化的解决方案,将时间复杂度降低到O(n log n)。
摘要由CSDN通过智能技术生成

题目描述

给定一个无序数组 arr,其中元素可正、可负、可 0,给定一个整数 k。求 arr 所有的子数组 中累加和小于或等于 k 的最长子数组长度。

题目解析

第一个想法:定义dp[…i]为以arr[i]位置结尾的累加和,找出dp[i]中小于等于k的值中的最大值

不可以,举个例子,2,2,-1,k=0。

按照没有k的方法求出dp, dp[0] = 2, dp[1] = 4, dp[2] = 3,再从其中筛选出小于等于0的,那么没有满足的子序列。事实上,子序列(2,2)。即-1是满足的,应该返回-1.所以不能直接在没有k的问题的基础上修改。

第二个想法:定义dp[i]就是以array[i]结尾的小于等于k的最大值

举个例子,2, 2, -1, k = 3

如果dp[i]是以array[i]结尾的小于等于k的最大值。

那么dp[0] = 2,dp[1] = 2, dp[2]=1,但是结果是3。当计算dp[2]时,想到利用前面的,因为是-1,所以此时就算把第一个元素加入,也满足,所以不能使用dp[i-1]来得到dp[i]。

总之直接使用一维数组的kadane算法不可行。

一个直观的方法是计算所有的子序列和

class Solution {
public:
    int maxSumNoLargeThanK(std::vector<int> arr, int k) {
      int ans = INT32_MIN;
        for (int i = 0; i < arr.size(); ++i) {
            int sum = 0;
            for (int j = i; j < arr.size(); ++j) {
                sum += arr[j];
                if(sum <= k){
                    ans = std::max(ans, sum);
                }
            }
        }
        return ans;
    }
};

不过,复杂度是O(N^2)。怎么优化呢?

优化

可以用前缀和来优化。

  • s u m [ i . . . j ] = s u m [ 0..... j ] − s u m [ 0...... i − 1 ] sum[i ... j] = sum[0.....j] - sum[0......i - 1] sum[i...j]=sum[0.....j]sum[0......i1]

  • 从而:

    • 要令 s u m [ i . . . j ] < = k sum[i ... j] <= k sum[i...j]<=k
    • s u m [ 0..... j ] − s u m [ 0...... i − 1 ] < = k sum[0.....j] - sum[0......i - 1] <= k sum[0.....j]sum[0......i1]<=k
    • 所以有 s u m [ 0...... i − 1 ] > = s u m [ 0..... j ] − k sum[0......i - 1] >= sum[0.....j] - k sum[0......i1]>=sum[0.....j]k
  • 因此:

    • 我们用一个遍历,求出每一个以 a r r [ j ] arr[j] arr[j]为结尾的前缀和 s u m [ 0.... j ] sum[0....j] sum[0....j]
    • 然后对这个前缀和求一个下界 s u m [ 0..... j ] − k sum[0.....j] - k sum[0.....j]k,然后在之前的结果中查询>=这个边界的最小值,如果存在,就是一个候选值
    • 然后再把sum(0,i)也放入set。
class Solution {
public:
    int maxSumNoLargeThanK(std::vector<int> arr, int k) {
        std::set<int> set;  // 记录i之前的,前缀和,按照有序表组织
        set.insert(0);// 一个数也没有的时候,就已经有一个前缀和是0了
        int max = INT32_MIN, sum = 0;
        for (int i = 0; i < arr.size(); ++i) {
            sum += arr[i]; // sum -> arr[0..i];
            auto min = set.lower_bound(sum - k);  //大于或等于参数列表中给定元素的元素
            if(min != set.end()){
                max = std::max(max, sum - k);
            }
            set.insert(sum); // 当前的前缀和加入到set中去
        }
        return max;
    }
};

如果不使用一定的数据结构,以上算法还是On2的。但是如果set的查找使用了特殊数据结构比如平衡二叉搜索树这种的,那么查找后继或者前驱就是logn级别了。这就是优化的一个方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值