题目描述
给定一个无序数组 arr,其中元素可正、可负、可 0,给定一个整数 k。求 arr 所有的子数组 中累加和小于或等于 k 的最长子数组长度。
题目解析
第一个想法:定义dp[…i]为以arr[i]位置结尾的累加和,找出
dp[i]
中小于等于k的值中的最大值
不可以,举个例子,2,2,-1,k=0。
按照没有k的方法求出dp, dp[0] = 2, dp[1] = 4, dp[2] = 3,再从其中筛选出小于等于0的,那么没有满足的子序列。事实上,子序列(2,2)。即-1是满足的,应该返回-1.所以不能直接在没有k的问题的基础上修改。
第二个想法:定义dp[i]就是以array[i]结尾的小于等于k的最大值
举个例子,2, 2, -1, k = 3
如果dp[i]是以array[i]结尾的小于等于k的最大值。
那么dp[0] = 2,dp[1] = 2, dp[2]=1,但是结果是3。当计算dp[2]时,想到利用前面的,因为是-1,所以此时就算把第一个元素加入,也满足,所以不能使用dp[i-1]来得到dp[i]。
总之直接使用一维数组的kadane算法不可行。
一个直观的方法是计算所有的子序列和
class Solution {
public:
int maxSumNoLargeThanK(std::vector<int> arr, int k) {
int ans = INT32_MIN;
for (int i = 0; i < arr.size(); ++i) {
int sum = 0;
for (int j = i; j < arr.size(); ++j) {
sum += arr[j];
if(sum <= k){
ans = std::max(ans, sum);
}
}
}
return ans;
}
};
不过,复杂度是O(N^2)。怎么优化呢?
优化
可以用前缀和来优化。
-
s u m [ i . . . j ] = s u m [ 0..... j ] − s u m [ 0...... i − 1 ] sum[i ... j] = sum[0.....j] - sum[0......i - 1] sum[i...j]=sum[0.....j]−sum[0......i−1]
-
从而:
- 要令 s u m [ i . . . j ] < = k sum[i ... j] <= k sum[i...j]<=k
- 即 s u m [ 0..... j ] − s u m [ 0...... i − 1 ] < = k sum[0.....j] - sum[0......i - 1] <= k sum[0.....j]−sum[0......i−1]<=k
- 所以有 s u m [ 0...... i − 1 ] > = s u m [ 0..... j ] − k sum[0......i - 1] >= sum[0.....j] - k sum[0......i−1]>=sum[0.....j]−k
-
因此:
- 我们用一个遍历,求出每一个以 a r r [ j ] arr[j] arr[j]为结尾的前缀和 s u m [ 0.... j ] sum[0....j] sum[0....j]
- 然后对这个前缀和求一个下界 s u m [ 0..... j ] − k sum[0.....j] - k sum[0.....j]−k,然后在之前的结果中查询>=这个边界的最小值,如果存在,就是一个候选值
- 然后再把sum(0,i)也放入set。
class Solution {
public:
int maxSumNoLargeThanK(std::vector<int> arr, int k) {
std::set<int> set; // 记录i之前的,前缀和,按照有序表组织
set.insert(0);// 一个数也没有的时候,就已经有一个前缀和是0了
int max = INT32_MIN, sum = 0;
for (int i = 0; i < arr.size(); ++i) {
sum += arr[i]; // sum -> arr[0..i];
auto min = set.lower_bound(sum - k); //大于或等于参数列表中给定元素的元素
if(min != set.end()){
max = std::max(max, sum - k);
}
set.insert(sum); // 当前的前缀和加入到set中去
}
return max;
}
};
如果不使用一定的数据结构,以上算法还是On2的。但是如果set的查找使用了特殊数据结构比如平衡二叉搜索树这种的,那么查找后继或者前驱就是logn级别了。这就是优化的一个方法。