R构建朴素贝叶斯分类器(Naive Bayes Classifier)

本文介绍了如何使用R构建朴素贝叶斯分类器,包括朴素贝叶斯的原理,模型构建及其评估。朴素贝叶斯算法基于贝叶斯定理和特征间的独立性假设,常用于情感分析、文档分类和垃圾邮件过滤等任务。
摘要由CSDN通过智能技术生成

R构建朴素贝叶斯分类器(Naive Bayes Classifier)

目录

R构建朴素贝叶斯分类器(Naive Bayes Classifier)

朴素贝叶斯原理及分类器

朴素贝叶斯模型构建评估


 

朴素贝叶斯原理及分类器

朴素贝叶斯是一种有监督的非线性分类算法。朴素贝叶斯分类器是一个简单的概率分类器族,它基于贝叶斯定理(Baye’s theorem),并在特征之间作出(朴素)独立性假设。朴素贝叶斯算法之所以被称为“朴素”,是因为它假设某一特征的出现与其他

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值