mtcnn 人脸对齐

博客指出很多自拍脸不正,而部分任务需要正脸图,此时需进行转换。介绍了转换步骤,先下载工具,新建文件夹用于输入输出,运行Python查看效果。还提到该操作依赖GPU和MXNet,且安装MXNet时要注意其与CUDA版本一致。
部署运行你感兴趣的模型镜像

 很多自拍脸并不是正的,特别是很多妹子自拍歪着头的,

但是很多任务需要的图需要不是歪着头

这个时候就需要转换

首先需要去下载工具:

git clone https://github.com/urbaneman/Face_crop_align_mtcnn

 新建文件夹以给input和output使用

mkdir t1 
mkdir t2

运行python 

python Face_align_crop.py --input_path t1 --output_path ./t2 --face_size 512

看下效果:

 

 不过这个需要依赖gpu和mxnet,

mxnet安装注意mxnet和cuda的版本一致

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

### MTCNN 人脸检测与对齐方法 MTCNN(Multi-task Cascaded Convolutional Networks)是一个多任务级联卷积神经网络框架,专门用于高效且精确的人脸检测和对齐。该模型由三个阶段组成: #### 阶段一:候选区域生成 (Proposal Network, P-Net) P-Net 是一个多尺度滑动窗口结构的小型 CNN,在不同尺度上扫描输入图像以生成大量粗略的人脸提议框。此过程不仅减少了后续处理的数据量,还初步过滤掉大部分非人脸区域。 ```python from mtcnn import MTCNN detector = MTCNN() image_path = "path_to_image.jpg" faces = detector.detect_faces(image.load_img(image_path)) ``` 这段 Python 代码展示了如何加载并初始化预训练好的 MTCNN 模型来执行人脸检测[^1]。 #### 阶段二:边界框精炼 (Refine Network, R-Net) R-Net 接收来自 P-Net 的建议框作为输入,并进一步细化这些提案的质量。它会去除更多不必要的人选框,并调整剩余框的位置以更好地匹配真实人脸轮廓。这一轮筛选显著提高了最终输出的准确性。 #### 阶段三:关键点定位与质量评估 (Output Network, O-Net) O-Net 执行最后一步优化工作,除了继续改进边界框外,还会预测每张脸上五个重要特征点——双眼中心、鼻尖以及嘴角两端的具体坐标。这使得不仅可以准确定位整个人脸范围,还能同步完成高精度的关键部位标记。 ```json { "box": [x_min, y_min, width, height], "confidence": score, "keypoints": { "left_eye": [lx, ly], "right_eye": [rx, ry], "nose": [nx, ny], "mouth_left": [mxl, myl], "mouth_right": [mxr, myr] } } ``` 上述 JSON 结构表示了一个典型的人脸检测结果对象,其中包含了矩形包围盒参数、置信度分数及五官位置信息[^4]。 对于实际应用来说,开发者通常只需要调用封装好的 API 或库函数即可轻松集成 MTCNN 功能到自己的项目中去。例如 `mtcnn` 库提供了非常简便易用的方法来进行批量图片处理。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值