近日,快手发表一篇名为《Transforming the Latent Space of StyleGAN for RealFace Editing》的论文
在stylegan的基础进行改进,引入transformer,提出一个W++的空间
先观看一下网络结构:

文章最大的贡献是引入了transformer,效果总的来说比W和W++空间好,可以看一下效果


文章解释了为啥引入transformer
An ideal solution to this problem should therefore satisfy the following two conditions: (i) limited growth of computational cost; (ii) some degree of correlation among style vectors. The attention-based
transformer structure [27] fits these two conditions naturally
说明了transformer满足两点要求,既能解决计算量暴增的问题还能保持style直接的相关性
论文也对代码进行了开源(https://github.com/AnonSubm2021/TransStyleGAN),可以玩一下。
不过遗憾的是,这个代码没有提供预训练模型,需要自己训练,这个有点费卡,需要8张v100

925

被折叠的 条评论
为什么被折叠?



