Transforming the Latent Space of StyleGAN for RealFace Editing

近日,快手发表一篇名为《Transforming the Latent Space of StyleGAN for RealFace Editing》的论文

在stylegan的基础进行改进,引入transformer,提出一个W++的空间

先观看一下网络结构:

文章最大的贡献是引入了transformer,效果总的来说比W和W++空间好,可以看一下效果

文章解释了为啥引入transformer

An ideal solution to this problem should therefore satisfy the following two conditions: (i) limited growth of computational cost; (ii) some degree of correlation among style vectors. The attention-based
transformer structure [27] fits these two conditions naturally

 说明了transformer满足两点要求,既能解决计算量暴增的问题还能保持style直接的相关性

论文也对代码进行了开源(https://github.com/AnonSubm2021/TransStyleGAN),可以玩一下。

不过遗憾的是,这个代码没有提供预训练模型,需要自己训练,这个有点费卡,需要8张v100

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值