追梦Hocking
码龄16年
关注
提问 私信
  • 博客:112,166
    社区:1,981
    动态:7
    学院:1,668
    115,822
    总访问量
  • 33
    原创
  • 2,313,467
    排名
  • 249
    粉丝
  • 5
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2008-12-23
博客简介:

zhouaho2010的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    513
    当月
    0
个人成就
  • 获得264次点赞
  • 内容获得102次评论
  • 获得786次收藏
创作历程
  • 7篇
    2023年
  • 18篇
    2022年
  • 1篇
    2021年
  • 1篇
    2020年
  • 7篇
    2019年
成就勋章
TA的专栏
  • ubuntu
    1篇
  • 深度学习
    4篇
  • 图像去雾算法
    15篇
  • 数字图像处理
    6篇
  • 计算机视觉
    5篇
  • 知识图谱
    1篇
  • 机器学习
    2篇
  • matlab学习
    1篇
  • 感悟
  • Pycharm
    1篇
  • 个人经历
    3篇
  • Python学习
    1篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉深度学习神经网络tensorflow图像处理
TA的社区
  • 周昊的课程社区_NO_1
    1 成员 12 内容
    创建者
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

CVPR 2023 Curricular Contrastive Regularization for Physics-aware Single Image Dehazing 个人学习笔记

用于物理感知单图像去雾的课程对比正则化Abstract考虑到不适定的性质,发展了单图像去模糊的对比正则化,引入了来自负图像的信息作为下界。然而,对比样本是非一致的,因为阴性通常距离清晰(即正)图像很远,使解空间仍然不足。此外,深度脱雾模型的可解释性对脱雾过程的物理研究还没有得到充分的探索。在本文中,我们提出了一种新的课程对比正则化,目标是一个自愿对比空间,而非非自愿对比空间。我们的负片提供了更好的下界约束,可以从1)模糊图像和2)通过其他现有方法进行相应的修复。此外,由于清晰图像和负图像嵌入
原创
发布博客 2023.12.01 ·
1877 阅读 ·
22 点赞 ·
1 评论 ·
24 收藏

CurricularContrastive Regularizationfor Physics-aware Dehazing代码

发布资源 2023.12.01 ·
zip

CVPR 2023 Context-aware Pretraining for Efficient Blind Image Decomposition 个人学习笔记

图1。恢复框架的原型: (a)传统方法[61,62]需要特定任务的网络设计和单独的训练。(b)一体机[28]依赖于繁琐的多头一对一训练。(c)转基因[49]是特别的,以消除一个特定的噪音一次。(d) IPT [4]使用一个可重用的预训练的中级转换器扩展了(c),它只工作于特定的任务。(e) BIDeN [17]返回到复杂的多解码器,并要求来自噪声标签的密集监督。(f)所提出的方法研究了通过利用在预训练过程中学习到的先验知识来去除一般的噪声组合,这在很大程度上简化了管道。(请放大以查看详细信息。)
原创
发布博客 2023.11.30 ·
1315 阅读 ·
19 点赞 ·
0 评论 ·
18 收藏

CVPR 2023 RIDCP: Revitalizing Real Image Dehazing via High-Quality Codebook Priors 个人学习笔记

代码下载链接:https://download.csdn.net/download/zhouaho2010/88577881Abstract由于缺乏成对的真实数据和稳健的先验,现有的去雾处理方法Existing dehazing approaches 难以处理struggle to process真实世界的模糊图像。在这项工作中,我们从合成更真实的雾天数据和引入更鲁棒的先验的网络角度提出了一个新的范式的真实图像去雾。具体来说,(1)我们没有采用实际的物理散射模型,而是重新考虑真实雾天图像
原创
发布博客 2023.11.28 ·
2483 阅读 ·
20 点赞 ·
0 评论 ·
30 收藏

CVPR 2023 RIDCP源码

发布资源 2023.11.28 ·
zip

利用AlphaMissense准确预测蛋白质组范围内的错义变体效应

在人类基因组中观察到的绝大多数错义变体具有未知的临床意义。我们提出了AlphaMisense,这是AlphaFold的一种改编,对人类和灵长类动物的变体群体频率数据库进行了微调,以预测错义变体的致病性。通过将结构背景和进化守恒相结合,我们的模型在广泛的遗传和实验基准上取得了最先进的结果,而无需对这些数据进行明确的训练。基因的平均致病性得分也可以预测其细胞重要性,能够识别现有统计方法检测能力不足的短必需基因。
原创
发布博客 2023.11.20 ·
871 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Latex写论文常见错误及解决办法汇总

读完了博士,发现Latex还是会偶尔出差,就想着还是总结一下遇到的错误,以便日后进行查询,希望也能帮助各位朋友。解决办法:添加包 \usepackage{booktabs}
原创
发布博客 2023.08.15 ·
513 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

错误 NVIDIA-SMI has failed because it couldn’t communicate with the NVIDIA driver. 解决方案

这是由于重启服务器,linux内核升级导致的,由于linux内核升级,之前的Nvidia驱动就不匹配连接了,但是此时Nvidia驱动还在,可以通过命令。ls /usr/src/ | grep nvidia,字符串中。3、再次 nvidia-smi,发现可以了。后面的部分都是驱动版本。1、 查看当前驱动版本。
原创
发布博客 2023.02.03 ·
4464 阅读 ·
1 点赞 ·
3 评论 ·
8 收藏

Rethinking Performance Gains in Image Dehazing Networks

论文源码:https://download.csdn.net/download/zhouaho2010/87393184 Abstract图像去雾是低层视觉中的一个活跃话题,随着深度学习的快速发展,许多图像去雾网络被提出。尽管这些网络的工作良好,但提高图像去雾性能的关键机制仍不清楚。出于这个原因,我们不打算提出一个具有奇特模块的去雾网络;相反,我们对流行的U-Net进行最小的修改以获得紧凑的去雾网络。具体来说,我们将U-Net中的卷积块交换为具有门控机制的残差块,融合主路径的特征映射,并使用选择核跳过连接
原创
发布博客 2023.01.20 ·
2932 阅读 ·
4 点赞 ·
1 评论 ·
19 收藏

gUnet源码(Rethinking Performance Gains in Image Dehazing Networks)

发布资源 2023.01.20 ·
zip

【AAAI2023】视觉辅助的常识知识获取Visually Grounded Commonsense Knowledge Acquisition 个人学习笔记

摘要:大规模的常识知识库为广泛的AI应用提供了能力,其中常识知识的自动提取extraction of commonsense knowledge (CKE)是一个基本和具有挑战性的问题。文本中的CKE因其固有的稀疏性和文本中常识的报道偏差reporting bias而闻名。另一方面,视觉感知包含了丰富的关于现实世界实体的常识知识,如(人、能拿的东西、瓶子),这可以作为获得基础常识知识的有前途的来源。在这项工作中,我们提出CLEVER,它将CKE描述为一个远端监督的多实例学习问题,其中模型学习从一组关于实体
原创
发布博客 2022.12.01 ·
1261 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

AAAI2023Visually Grounded Commonsense Knowledge Acquisition 源码

发布资源 2022.12.01 ·

2019 DENSE-HAZE: A BENCHMARK FOR IMAGE DEHAZING WITH DENSE-HAZE AND HAZE-FREE IMAGES

Dense—Haze数据集下载:Dense_Haze浓雾数据集-深度学习文档类资源-CSDN下载 ABSTRACT 单图像去模糊处理是一个最近引起重要关注的不适定问题。尽管在过去的几年中,人们对去雾方法的兴趣显著增加,但由于缺乏真正的模糊和相应的无雾参考图像对,去雾方法的验证仍然在很大程度上不令人满意。为了解决这一限制,我们引入了密集的雾霾Dense-Haze——一个新的去雾霾数据集。密雾以密集、均匀的朦胧场景为特征,包含33对真实的朦胧和相应的无雾霾图像。通过引入由专业的雾霾机产生的真实的雾霾,记录了朦胧
原创
发布博客 2022.09.24 ·
2043 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

Dense_Haze 浓雾数据集

发布资源 2022.09.24 ·
zip

CVPR 2022 Image Dehazing Transformer with Transmission-Aware 3D Position Embedding 个人学习笔记

在下面的内容中,我们将详细介绍这些模块。更详细的网络结构和参数可以在补充材料中找到。 3.2. Network StructureTransformer模块。为了实现全局环境来处理空间变化的雾霾,我们采用了一种具有很强的建模远程依赖能力的变压器。具体来说,我们采用Swin Transformer[21]作为骨干backbone,基于其有效性和效率之间的良好权衡,提取分层变压器特征。其他的变压器骨干也可以在我们的框架中使用。虽然更大的图像补丁可以提高Swin Transformer[21]的计算效率,但它会在
原创
发布博客 2022.09.24 ·
3890 阅读 ·
4 点赞 ·
1 评论 ·
26 收藏

CVPR2022 Image Dehazing Transformer with Transmission-Aware 3D代码

发布资源 2022.09.24 ·
zip

CVPR 2022 Self-augmented Unpaired Image Dehazing via Density and Depth Decomposition个人学习笔记

Abstract为了克服在合成的模糊-干净图像对上训练的去模糊模型的过拟合问题,最近的许多方法试图通过对未配对数据进行训练来提高模型的泛化能力generalization ability。其中大多数只是简单地制定了去雾化和再雾化循环,而忽略了现实世界中雾霾环境的物理性质,即雾霾随密度和深度而变化。.在本文中,我们提出了一种自增强的图像去雾框架,称为D4(通过将传输图分解为密度和深度来去雾),用于雾霾的产生和去除。所提出的框架不是仅仅估计传输图或干净内容,而是侧重于探索exploring模糊和干净图像中包含
原创
发布博客 2022.09.05 ·
3124 阅读 ·
6 点赞 ·
2 评论 ·
23 收藏

Deep Retinex Decomposition for Low-LightEnhancement (2018 BMCV,含代码)

摘要Retinex模型是弱光图像增强的有效工具。它假设观察到的图像可以分解为反射率和照明度。大多数现有的基于retinex的方法都为这种高度病态的分解精心设计了手工制作的约束和参数,当应用于各种场景时,这可能会受到模型容量的限制。在本文中,我们收集了一个包含低/正光图像对的低光数据集(LOL),并提出了一个在该数据集上学习的深度Retinex网,包括一个用于分解的Decom-Net网和一个用于照明调整的Enhance-Net 。在深度网的训练过程中,没有分解的反射率和照明的地面真相ground truth。
原创
发布博客 2022.07.12 ·
2958 阅读 ·
2 点赞 ·
1 评论 ·
28 收藏

Hindawi出版社旗下期刊的latex模板

发布资源 2022.07.06 ·
zip

Hindawi出版社的期刊论文通用word模板 Hindawi word模板Hindawi_template.docx

发布资源 2022.07.06 ·
rar
加载更多