前言
深度学习领域,最常见的就是各种网络模型,那么在写论文或者文章,介绍网络模型的时候,最好的办法当然就是展示代码画图,今天介绍的 Github 项目,就是整理了 22 个设计和可视化网络结构的工具,其地址如下:
https://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network
22 款工具名称分别是,其中我用的文章封面图就是第 16 款工具实现的结果,非常的炫酷和让人眼前一亮:
- draw_convnet
- NNSVG
- PlotNeuralNet
- TensorBoard
- Caffe
- Matlab
- Keras.js
- Keras-sequential-ascii
- Netron
- DotNet
- Graphviz
- Keras Visualization
- Conx
- ENNUI
- NNet
- GraphCore
- Neataptic
- TensorSpace
- Netscope CNN Analyzer
- Monial
- Texample
- Quiver
工具
1. draw_convnet
Github: https://github.com/gwding/draw_convnet
star 数量:1.7k+
这个工具最后一次更新是 2018 年的时候,一个 python 脚本来绘制卷积神经网络的工具 。
2. NNSVG
网址:http://alexlenail.me/NN-SVG/LeNet.html
这个工具有 3 种网络结构风格,分别如下所示:
LeNet 类型:

AlexNet 类型

FCNN 类型

3. PlotNeuralNet
GitHub 地址:https://github.com/HarisIqbal88/PlotNeuralNet
star 数量:8.2k+
这个工具是基于 Latex 代码实现的用于绘制网络结构,可以看看使用例子看看这些网络结构图是如何绘制出来的。
效果如下所示:


安装
这里给出在 Ubuntu 和 windows 两个系统的安装方式:
ubuntu 16.04
sudo apt-get install texlive-latex-extra
Ubuntu 18.04.2 是基于这个网站:https://gist.github.com/rain1024/98dd5e2c6c8c28f9ea9d,安装命令如下:
sudo apt-get install texlive-latex-base
sudo apt-get install texlive-fonts-recommended
sudo apt-get install texlive-fonts-extra
sudo apt-get install texlive-latex-extra
Windows
- 首先下载并安装 MikTex,下载网站:https://miktex.org/download
- 其次,下载并安装 windows 的 bash 运行器,推荐这两个:
使用例子
安装完后就是使用,按照如下所示即可:
cd pyexamples/
bash ../tikzmake.sh test_simple
Python 的用法如下:
- 先创建新的文件夹,并生成一个新的 python 代码文件:
$ mkdir my_project
$ cd my_project
vim my_arch.py
- 然后在新的代码文件
my_arch.py中添加这段代码,用于定义你的网络结构,主要是不同类型网络层的参数,包括输入输出数量、卷积核数量等
import sys
sys.path.append('../')
from pycore.tikzeng import *
# defined your arch
arch = [
to_head( '..' ),
本文介绍了22款用于设计和可视化的神经网络工具,包括draw_convnet、NNSVG、PlotNeuralNet、TensorBoard等。这些工具覆盖Python、TensorFlow、Keras等多个平台,提供从简单到复杂的网络结构展示。例如,Netron支持多种框架的模型可视化,而TensorSpace则提供了3D神经网络结构的展示。无论是论文写作还是学习理解网络结构,这些工具都能提供极大的帮助。
最低0.47元/天 解锁文章
6954

被折叠的 条评论
为什么被折叠?



