【第十一章】改进神经网络学习方式-Softmax 实际上,将具有对数似然成本的 softmax 输出层视为与具有交叉熵成本的 sigmoid 输出层非常相似是很有用的。在许多问题中,将输出激活 aLj 解释为网络对正确输出为 j 的概率的估计是方便的。将这一点与上一段的观察结合起来,我们可以看到 softmax 层的输出是一组正数,它们总和为 1。因此,如果 aL4 增加,那么其他输出激活必须以相同的总量减少,以确保所有激活的总和保持为 1。在这种情况下,它将估计相应的概率。在下面显示了可调节的滑块,显示了加权输入的可能值,并显示了相应的输出激活的图表。
ChatGPT提示词工程师&AI大神吴恩达2023年视频课程学习实践 现在我们的时间都很紧张,看电影都要看那种5分钟一部电影的解说,看网上的文章也是,直接把大段的文字输给ChatGPT,让他总结一下主要内容,我们看看就算了。
昨天Google发布了最新的开源模型Gemma,今天我来体验一下 创业失败,又找不到工作,哎。。。看看以前写的文章,业余搞人工智能还是很早之前的事情了,之前为了高工资,一直想从事人工智能相关的工作都没有实现。现在终于可以安静地系统地学习一下了。也是一边学习一边写博客记录吧。昨天Google发布了最新的开源模型Gemma,今天我就来简单体验一下。