时间复杂度解析 根据算法换算时间复杂度 常见时间复杂度及其之间的关系

本文介绍了如何通过时间复杂度分析算法效率,探讨了大O记法的概念,以及如何根据算法换算时间复杂度。文章列举了常见时间复杂度及其之间的关系,强调了在算法分析中关注最坏时间复杂度的重要性。

一、引入

先看一道题,如果 a+b+c=1000,且 a2+b2=c^2(a,b,c 为自然数),如何求出所有a、b、c可能的组合?

二、两种解答方式

  • 算法是独立存在的一种解决问题的方法和思想。

第一种解答方式:

import time

start_time = time.time()

for a in range(0, 1001):
    for b in range(0, 1001):
        for c in range(0, 1001):
            if a**2 + b**2 == c**2 and a+b+c == 1000:
                print("a,b,c:%d,%d,%d" % (a, b, c))

end_time = time.time()
print(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值