宋代史学家司马光在《资治通鉴》中有一段著名的“德才论”:“是故才德全尽谓之圣人,才德兼亡谓之愚人,德胜才谓之君子,才胜德谓之小人。凡取人之术,苟不得圣人,君子而与之,与其得小人,不若得愚人。”
现给出一批考生的德才分数,请根据司马光的理论给出录取排名。
输入格式:
输入第一行给出 3 个正整数,分别为:N(≤105),即考生总数;L(≥60),为录取最低分数线,即德分和才分均不低于 L 的考生才有资格被考虑录取;H(<100),为优先录取线——德分和才分均不低于此线的被定义为“才德全尽”,此类考生按德才总分从高到低排序;才分不到但德分到线的一类考生属于“德胜才”,也按总分排序,但排在第一类考生之后;德才分均低于 H,但是德分不低于才分的考生属于“才德兼亡”但尚有“德胜才”者,按总分排序,但排在第二类考生之后;其他达到最低线 L 的考生也按总分排序,但排在第三类考生之后。
随后 N 行,每行给出一位考生的信息,包括:
准考证号 德分 才分,其中准考证号为 8 位整数,德才分为区间 [0, 100] 内的整数。数字间以空格分隔。输出格式:
输出第一行首先给出达到最低分数线的考生人数 M,随后 M 行,每行按照输入格式输出一位考生的信息,考生按输入中说明的规则从高到低排序。当某类考生中有多人总分相同时,按其德分降序排列;若德分也并列,则按准考证号的升序输出。
Python冒泡排序(测试点2/3/4超时)
n = list(map(int,input().split())) #n[0] = N, n[1] = L, n[2] = H
s = [[0] for i in range(n[0])]
t = [[],[],[],[]]
cnt = 0
for i in range(n[0]):
s[i] = list(map(int,input().split()))
def sorting(t,s):
for i in range(len(t)-1):
for j in range(0,len(t)-i-1):
if s[t[j]][3] < s[t[j+1]][3]:
t[j], t[j+1] = t[j+1], t[j]
elif s[t[j]][3] == s[t[j+1]][3]:
if s[t[j]][1] < s[t[j+1]][1]:
t[j], t[j+1] = t[j+1], t[j]
elif s[t[j]][1] == s[t[j+1]][1]:
if s[t[j]][0] > s[t[j+1]][0]:
t[j], t[j+1] = t[j+1], t[j]
return t
for i in range(n[0]):
if s[i][1] >= n[1] and s[i][2] >= n[1]:
if s[i][1] >= n[2]:
if s[i][2] >= n[2]:
t[0].append(i) #1类
else:
t[1].append(i) #2类
else:
if s[i][2] < n[2] and s[i][1] >= s[i][2]:
t[2].append(i) #3类
else:
t[3].append(i) #4类
s[i].append(s[i][1] + s[i][2]) #s[i][3] = 德才总分
cnt += 1
print(cnt)
for i in range(4):
t[i] = sorting(t[i],s)
for j in range(len(t[i])):
print(s[t[i][j]][0], s[t[i][j]][1], s[t[i][j]][2])
304

被折叠的 条评论
为什么被折叠?



