PAT 乙级 1018 锤子剪刀布

本文通过分析两玩家交锋记录,揭示了锤子、剪刀、布在游戏中的胜负策略,包括统计各自的胜平负次数,并指出出哪两种手势赢得最多的概率。
摘要由CSDN通过智能技术生成

大家应该都会玩“锤子剪刀布”的游戏:两人同时给出手势,胜负规则如图所示:

FigCJB.jpg

现给出两人的交锋记录,请统计双方的胜、平、负次数,并且给出双方分别出什么手势的胜算最大。

输入格式:

输入第 1 行给出正整数 N(≤105),即双方交锋的次数。随后 N 行,每行给出一次交锋的信息,即甲、乙双方同时给出的的手势。C 代表“锤子”、J 代表“剪刀”、B 代表“布”,第 1 个字母代表甲方,第 2 个代表乙方,中间有 1 个空格。

输出格式:

输出第 1、2 行分别给出甲、乙的胜、平、负次数,数字间以 1 个空格分隔。第 3 行给出两个字母,分别代表甲、乙获胜次数最多的手势,中间有 1 个空格。如果解不唯一,则输出按字母序最小的解。

 

Python(测试点5运行超时) 

n = int(input())
s = [''] * n
for i in range(n):
    s[i] = input().split()
dic = {'C':'J','J':'B','B':'C'}
cnt1 = {'C':0,'J':0,'B':0}
cnt2 = {'C':0,'J':0,'B':0}
rcd1 = {'S':0,'P':0,'F':0}
rcd2 = {'S':0,'P':0,'F':0}

for i in range(n):
    if dic[s[i][0]] == s[i][1]:
        rcd1['S'] += 1
        rcd2['F'] += 1
        cnt1[s[i][0]] += 1
    elif s[i][0] == s[i][1]:
        rcd1['P'] += 1
        rcd2['P'] += 1
    else:
        rcd1['F'] += 1
        rcd2['S'] += 1
        cnt2[s[i][1]] += 1

print(rcd1['S'],rcd1['P'],rcd1['F'])
print(rcd2['S'],rcd2['P'],rcd2['F'])

for i in 'BCJ':
    if cnt1[i] == max(cnt1.values()):
        print(i,end = ' ')
        break
for i in 'BCJ':
    if cnt2[i] == max(cnt2.values()):
        print(i)
        break

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值