模式识别基础概念

                  

                      

一 样本、模式和模式类

1 样本(sample):

研究中实际观测或调查的一部分个体称。在图像识别方面,比如的车牌、条形码、指纹、人脸和字符等。

2 模式(pattern):

     通过对具体的个别事物进行观测所得的具有时间和空间分布的信息,在有限维条件下可以描述和表达样本,是模式识别的对象,一般用事物的各种属性来表示。在图像中,矩形、圆和三角形或是数字、字母和汉字等都可以构成一个模式。

模式类(pattern class):

     把模式属于的类别或同一类中的模式的总体称为模式类,也就是具有某种相似性的模式的集合。模式识别就是将样本对应的模式归入到模式类中的过程。比如道路图像中检测到的车辆,卡车、客车和轿车就是三个不同的模式类。

二 特征、特征向量和特征空间

特征

是从所有模式信息中选取出来的,可以用于模式识别的部分属性。特征既可以是数值型的,也可以是非数值型的。特征既可以直接采用事物的属性,也可以由事物属性经计算处理得到。图像中待识别的目标的轮廓、直方图、形状、纹理、边缘、颜色、面积和链码都可以作为特征。    

特征空间

   把每个特征作为一个维度,就可以构成一个多维的空间,每个模式都是空间中的一个点。如果特征都是数值型特征,则特征空间是一个几何空间;如果特征是非数值型特征,特征空间就是一个集合空间。特征空间中的一个子空间或者一个区域,就代表了具有相似性的一个模式类。

特征向量

几何特征空间的一个点代表一个模式,其各个特征值构成了一个特征向量。车牌的颜色、矩形度和纹理就可以组成一个特征向量。

三 相似度的度量

模式识别的依据是模式之间的相似性,我们总是把相似程度高的模式划归为同一类,这就牵涉到如何定量地定义“相似度”的问题。两个模式之间的相似度度量标准应当满足以下几个要求:

相似度应当为非负值

一个模式与自身的相似度应当是最大的

相似度对两个模式是对称的

如果模式的特征是数值型特征,所有模式都是多维几何空间中的点,此时最明显的相似度度量标准就是点与点之间的距离。当然,距离的定义是多种多样的。常用的距离度量

欧几里德距离

明考夫斯基距离

曼哈顿距离

切比雪夫距离 

当然,在图像中,也有用灰度直方图中的峰值作为距离,或者直接用灰度值之差作为距离。

四 紧致性

   当特征空间中属于同一类的模式相似度远高于与其它类中的模式的相似度时,称模式类具有紧致性。紧致性要求是模式识别的基本要求,只有当两个类之间相似度远低于同一个类内部相似度时,分类的错误率才会较低。比如行人与车辆的相似度远低于行人跟行人的相似度或车辆跟车辆的相似度。

参考资料:北京理工大学课程中心《模式识别》讲义

展开阅读全文

没有更多推荐了,返回首页