open addressing

1 Overview

      Open addressing和Chaining是两种不同的解决hash冲突的策略。当多个不同的key被映射到相同的slot时,chaining方式采用链表保存所有的value。而Open addressing则尝试在该slot的邻近位置查找,直到找到对应的value或者空闲的slot, 这个过程被称作probing。常见的probing策略有Linear probing,Quadratic probing和Double hashing。

 

2 Chaining

2.1 Chaining in java.util.HashMap

      在分析open addressing策略之前,首先简单介绍一下大多数的Java 核心集合类采用的chaining策略,以便比较。 java.util.HashMap有一个Entry[]类型的成员变量table,其每个非null元素都是一个单向链表的表头。

  • put():如果存在hash冲突,那么对应的table元素的链表长度会大于1。
  • get():需要对链表进行遍历,在遍历的过程中不仅要判断key的hash值是否相等,还要判断key是否相等或者equals。
  • 对于put()和get()操作,如果其参数key为null,那么HashMap会有些特别的优化。

      Chaining策略的主要缺点是需要通过Entry保存key,value以及指向链表下个节点的引用(Map.Entry就有四个成员变量),这意味着更多的内存使用(尤其是当key,value本身使用的内存很小时,额外使用的内存所占的比例就显得比较大)。此外链表对CPU的高速缓存不太友好。

 

3 Open Addressing

3.1 Probing

3.1.1 Linear probing

      两次查找位置的间隔为一固定值,即每次查找时在原slot位置的基础上增加一个固定值(通常为1),例如:P = (P + 1) mod SLOT_LENGTH。其最大的优点在于计算速度快,另外对CPU高速缓存更友好。其缺点也非常明显:

      假设key1,key2,key3的hash code都相同并且key1被映射到slot(p),那么在计算key2的映射位置时需要查找slot(p), slot(p+1),计算key3的映射位置时需要查找slot(p), slot(p+1),slot(p+2)。也就是说对于导致hash冲突的所有key,在probing过程中会重复查找以前已经查找过的位置,这种现象被称为clustering。

 
3.1.2 Quadratic probing

      两次查找位置的间隔线性增长,例如P(i) = (P + c1*i + c2*i*i) mod SLOT_LENGTH,其中c1和c2为常量且c2不为0(如果为0,那么降级为Linear probing)。 Quadratic probing的各方面性能介于Linear probing和Double hashing之间。


3.1.3 Double hashing 
       两次查找位置的间隔为一固定值,但是该值通过另外一个hash算法生成,例如P = (P + INCREMENT(key)) mod SLOT_LENGTH,其中INCREMENT即另外一个hash算法。以下是个简单的例子:

      H(key) = key mod 10
      INCREMENT(key) = 1 + (key mod 7)
      P(15): H(15) = 5;
      P(35): H(35) = 5, 与P(15)冲突,因此需要进行probe,位置是 (5 + INCREMENT(35)) mod 10 = 6
      P(25): H(25) = 5, 与P(15)冲突,因此需要进行probe,位置是 (5 + INCREMENT(25)) mod 10 = 0

      P(75): H(75) = 5, 与P(15)冲突,因此需要进行probe,位置是 (5 + INCREMENT(75)) mod 10 = 1

      从以上例子可以看出,跟Linear probing相比,减少了重复查找的次数。

 

3.2 Load Factor

      基于open addressing的哈希表的性能对其load factor属性值非常敏感。如果该值超过0.7 (Trove maps/sets的默认load factor是0.5),那么性能会下降的非常明显。由于hash冲突导致的probing次数跟(loadFactor) / (1 - loadFactor)成正比。当loadFactor为1时,如果哈希表中的空闲slot非常少,那么可能会导致probing的次数非常大。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值