花书+吴恩达深度学习(二四)蒙特卡罗方法(重要采样,MCMC)

如果这篇文章对你有一点小小的帮助,请给个关注,点个赞喔,我会非常开心的~

花书+吴恩达深度学习(二三)结构化概率模型(贝叶斯网络、马尔可夫网络)
花书+吴恩达深度学习(二四)蒙特卡罗方法(重要采样,MCMC)
花书+吴恩达深度学习(二五)直面配分函数(CD, SML, SM, RM, NCE)
花书+吴恩达深度学习(二六)近似推断(EM, 变分推断)

0. 前言

随机算法可以粗略的分为两类:

  • Las Vegas算法:精确的返回一个正确答案,或者返回算法失败了,占用随机量的计算资源
  • 蒙特卡罗算法:返回答案具有随机大小的错误,花费更多的计算资源可以减少这种错误

当无法精确计算和或积分时,通常可以使用蒙特卡罗采样来近似它,令:
s = ∑ x p ( x ) f ( x ) = E p [ f ( x ) ] s = ∫ p ( x ) f ( x ) d x = E p [ f ( x ) ] s=\sum_xp(x)f(x)=E_p[f(x)]\\ s=\int p(x)f(x)dx=E_p[f(x)] s=xp(x)f(x)=Ep[f(x)]s=p(x)f(x)dx=Ep[f(x)]
根据大数定理,如果样本满足独立同分布,那么:
lim ⁡ n → ∞ s ^ n = s V a r [ s ^ n ] = 1 n 2 ∑ i = 1 n V a r [ f ( x ) ] = V a r [ f ( x ) ] n \lim_{n\rightarrow \infty}\hat{s}_n=s\\ Var[\hat{s}_n]=\frac{1}{n^2}\sum_{i=1}^nVar[f(x)]=\frac{Var[f(x)]}{n} nlims^n=sVar[s^n]=n21i=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值